terclim by ICS banner
IVES 9 IVES Conference Series 9 SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Abstract

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation. Currently, very few studies have focused on the characterization and valorisation of the antioxidant component of lees. Although the role of glutathione has been demonstrated [3], recent studies have shown that S- and N- containing compounds are the main contributors to the antioxidant metabolome of wine [4]. Thus, the valorisation of wine lees to obtain compounds with antioxidant capacity seems to be of great interest for the wine industry.

In order to obtain extracts with antioxidant properties from white wine lees, we studied the interest of subcritical water as a green extraction process. The extraction conditions (temperature, extraction duration and stirring speed) were optimized by Response Surface Methodology (RSM) to maximize the antioxidant properties of the obtained extracts. The composition of the soluble fraction such as total phenolic content, protein, SH- compounds and glutathione was determined by spectrophotometry and LC-MS methods. Global antioxidant activity of extracts was determined by DPPH (radical-scavenging power), FRAP (Ferric reducing antioxidant potential) and OCR (Oxygen Consumption Rate) in model wine solution.

Results show that temperature is the key parameter for obtaining extracts with high antioxidant activity. Interestingly, we observe that the antioxidant potential does not seem to be related to the presence of a single molecule but rather to the presence of a pool of reducing compounds.

To conclude, subcritical water is a promising eco-sustainable process to obtain antioxidant compounds from wine lees. Such extracts could be used for a targeted application in oenology as well as in other sectors (food, cosmetics, pharmaceuticals).

 

1. Dimou, Charalampia, Nikolaos Kopsahelis, Aikaterini Papadaki, Seraphim Papanikolaou, Ioannis K. Kookos, Ioanna Mandala, and Apostolis A. Koutinas. ‘Wine Lees Valorization: Biorefinery Development Including Production of a Generic Fermentation Feedstock Employed for Poly(3-Hydroxybutyrate) Synthesis’. Food Research International 73 (July 2015): 81–87.
2. De Iseppi, Alberto, Matteo Marangon, Simone Vincenzi, Giovanna Lomolino, Andrea Curioni, and Benoit Divol. ‘A Novel Approach for the Valorization of Wine Lees as a Source of Compounds Able to Modify Wine Properties’. LWT 136 (January 2021): 110274.
3. Lavigne-Cruège, V. & Dubourdieu, D., 2002. Role of glutathione on development of aroma defects in dry white wines. In 13th International Enology Symposium, Trogus, H., Gafner, J., Sutterlin., Eds. International Association of Enology: Montpellier, France, pp 331-347
4. Romanet, Remy, Florian Bahut, Maria Nikolantonaki, and Régis D. Gougeon. ‘Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry’. Antioxidants 9, no. 2 (28 January 2020): 115.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Benjamin Poulain1,2, Delphine Winstel1,2, Axel Marchal1,2, Virginie Moine3, Claudia Nioi1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France

Contact the author*

Keywords

Wine lees, antioxidant, subcritical water, response surface methodology

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.