terclim by ICS banner
IVES 9 IVES Conference Series 9 SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Abstract

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation. Currently, very few studies have focused on the characterization and valorisation of the antioxidant component of lees. Although the role of glutathione has been demonstrated [3], recent studies have shown that S- and N- containing compounds are the main contributors to the antioxidant metabolome of wine [4]. Thus, the valorisation of wine lees to obtain compounds with antioxidant capacity seems to be of great interest for the wine industry.

In order to obtain extracts with antioxidant properties from white wine lees, we studied the interest of subcritical water as a green extraction process. The extraction conditions (temperature, extraction duration and stirring speed) were optimized by Response Surface Methodology (RSM) to maximize the antioxidant properties of the obtained extracts. The composition of the soluble fraction such as total phenolic content, protein, SH- compounds and glutathione was determined by spectrophotometry and LC-MS methods. Global antioxidant activity of extracts was determined by DPPH (radical-scavenging power), FRAP (Ferric reducing antioxidant potential) and OCR (Oxygen Consumption Rate) in model wine solution.

Results show that temperature is the key parameter for obtaining extracts with high antioxidant activity. Interestingly, we observe that the antioxidant potential does not seem to be related to the presence of a single molecule but rather to the presence of a pool of reducing compounds.

To conclude, subcritical water is a promising eco-sustainable process to obtain antioxidant compounds from wine lees. Such extracts could be used for a targeted application in oenology as well as in other sectors (food, cosmetics, pharmaceuticals).

 

1. Dimou, Charalampia, Nikolaos Kopsahelis, Aikaterini Papadaki, Seraphim Papanikolaou, Ioannis K. Kookos, Ioanna Mandala, and Apostolis A. Koutinas. ‘Wine Lees Valorization: Biorefinery Development Including Production of a Generic Fermentation Feedstock Employed for Poly(3-Hydroxybutyrate) Synthesis’. Food Research International 73 (July 2015): 81–87.
2. De Iseppi, Alberto, Matteo Marangon, Simone Vincenzi, Giovanna Lomolino, Andrea Curioni, and Benoit Divol. ‘A Novel Approach for the Valorization of Wine Lees as a Source of Compounds Able to Modify Wine Properties’. LWT 136 (January 2021): 110274.
3. Lavigne-Cruège, V. & Dubourdieu, D., 2002. Role of glutathione on development of aroma defects in dry white wines. In 13th International Enology Symposium, Trogus, H., Gafner, J., Sutterlin., Eds. International Association of Enology: Montpellier, France, pp 331-347
4. Romanet, Remy, Florian Bahut, Maria Nikolantonaki, and Régis D. Gougeon. ‘Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry’. Antioxidants 9, no. 2 (28 January 2020): 115.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Benjamin Poulain1,2, Delphine Winstel1,2, Axel Marchal1,2, Virginie Moine3, Claudia Nioi1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France

Contact the author*

Keywords

Wine lees, antioxidant, subcritical water, response surface methodology

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.