terclim by ICS banner
IVES 9 IVES Conference Series 9 SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Abstract

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation. Currently, very few studies have focused on the characterization and valorisation of the antioxidant component of lees. Although the role of glutathione has been demonstrated [3], recent studies have shown that S- and N- containing compounds are the main contributors to the antioxidant metabolome of wine [4]. Thus, the valorisation of wine lees to obtain compounds with antioxidant capacity seems to be of great interest for the wine industry.

In order to obtain extracts with antioxidant properties from white wine lees, we studied the interest of subcritical water as a green extraction process. The extraction conditions (temperature, extraction duration and stirring speed) were optimized by Response Surface Methodology (RSM) to maximize the antioxidant properties of the obtained extracts. The composition of the soluble fraction such as total phenolic content, protein, SH- compounds and glutathione was determined by spectrophotometry and LC-MS methods. Global antioxidant activity of extracts was determined by DPPH (radical-scavenging power), FRAP (Ferric reducing antioxidant potential) and OCR (Oxygen Consumption Rate) in model wine solution.

Results show that temperature is the key parameter for obtaining extracts with high antioxidant activity. Interestingly, we observe that the antioxidant potential does not seem to be related to the presence of a single molecule but rather to the presence of a pool of reducing compounds.

To conclude, subcritical water is a promising eco-sustainable process to obtain antioxidant compounds from wine lees. Such extracts could be used for a targeted application in oenology as well as in other sectors (food, cosmetics, pharmaceuticals).

 

1. Dimou, Charalampia, Nikolaos Kopsahelis, Aikaterini Papadaki, Seraphim Papanikolaou, Ioannis K. Kookos, Ioanna Mandala, and Apostolis A. Koutinas. ‘Wine Lees Valorization: Biorefinery Development Including Production of a Generic Fermentation Feedstock Employed for Poly(3-Hydroxybutyrate) Synthesis’. Food Research International 73 (July 2015): 81–87.
2. De Iseppi, Alberto, Matteo Marangon, Simone Vincenzi, Giovanna Lomolino, Andrea Curioni, and Benoit Divol. ‘A Novel Approach for the Valorization of Wine Lees as a Source of Compounds Able to Modify Wine Properties’. LWT 136 (January 2021): 110274.
3. Lavigne-Cruège, V. & Dubourdieu, D., 2002. Role of glutathione on development of aroma defects in dry white wines. In 13th International Enology Symposium, Trogus, H., Gafner, J., Sutterlin., Eds. International Association of Enology: Montpellier, France, pp 331-347
4. Romanet, Remy, Florian Bahut, Maria Nikolantonaki, and Régis D. Gougeon. ‘Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry’. Antioxidants 9, no. 2 (28 January 2020): 115.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Benjamin Poulain1,2, Delphine Winstel1,2, Axel Marchal1,2, Virginie Moine3, Claudia Nioi1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France

Contact the author*

Keywords

Wine lees, antioxidant, subcritical water, response surface methodology

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].