terclim by ICS banner
IVES 9 IVES Conference Series 9 SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Abstract

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation. Currently, very few studies have focused on the characterization and valorisation of the antioxidant component of lees. Although the role of glutathione has been demonstrated [3], recent studies have shown that S- and N- containing compounds are the main contributors to the antioxidant metabolome of wine [4]. Thus, the valorisation of wine lees to obtain compounds with antioxidant capacity seems to be of great interest for the wine industry.

In order to obtain extracts with antioxidant properties from white wine lees, we studied the interest of subcritical water as a green extraction process. The extraction conditions (temperature, extraction duration and stirring speed) were optimized by Response Surface Methodology (RSM) to maximize the antioxidant properties of the obtained extracts. The composition of the soluble fraction such as total phenolic content, protein, SH- compounds and glutathione was determined by spectrophotometry and LC-MS methods. Global antioxidant activity of extracts was determined by DPPH (radical-scavenging power), FRAP (Ferric reducing antioxidant potential) and OCR (Oxygen Consumption Rate) in model wine solution.

Results show that temperature is the key parameter for obtaining extracts with high antioxidant activity. Interestingly, we observe that the antioxidant potential does not seem to be related to the presence of a single molecule but rather to the presence of a pool of reducing compounds.

To conclude, subcritical water is a promising eco-sustainable process to obtain antioxidant compounds from wine lees. Such extracts could be used for a targeted application in oenology as well as in other sectors (food, cosmetics, pharmaceuticals).

 

1. Dimou, Charalampia, Nikolaos Kopsahelis, Aikaterini Papadaki, Seraphim Papanikolaou, Ioannis K. Kookos, Ioanna Mandala, and Apostolis A. Koutinas. ‘Wine Lees Valorization: Biorefinery Development Including Production of a Generic Fermentation Feedstock Employed for Poly(3-Hydroxybutyrate) Synthesis’. Food Research International 73 (July 2015): 81–87.
2. De Iseppi, Alberto, Matteo Marangon, Simone Vincenzi, Giovanna Lomolino, Andrea Curioni, and Benoit Divol. ‘A Novel Approach for the Valorization of Wine Lees as a Source of Compounds Able to Modify Wine Properties’. LWT 136 (January 2021): 110274.
3. Lavigne-Cruège, V. & Dubourdieu, D., 2002. Role of glutathione on development of aroma defects in dry white wines. In 13th International Enology Symposium, Trogus, H., Gafner, J., Sutterlin., Eds. International Association of Enology: Montpellier, France, pp 331-347
4. Romanet, Remy, Florian Bahut, Maria Nikolantonaki, and Régis D. Gougeon. ‘Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry’. Antioxidants 9, no. 2 (28 January 2020): 115.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Benjamin Poulain1,2, Delphine Winstel1,2, Axel Marchal1,2, Virginie Moine3, Claudia Nioi1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France

Contact the author*

Keywords

Wine lees, antioxidant, subcritical water, response surface methodology

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.