terclim by ICS banner
IVES 9 IVES Conference Series 9 SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Abstract

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation. Currently, very few studies have focused on the characterization and valorisation of the antioxidant component of lees. Although the role of glutathione has been demonstrated [3], recent studies have shown that S- and N- containing compounds are the main contributors to the antioxidant metabolome of wine [4]. Thus, the valorisation of wine lees to obtain compounds with antioxidant capacity seems to be of great interest for the wine industry.

In order to obtain extracts with antioxidant properties from white wine lees, we studied the interest of subcritical water as a green extraction process. The extraction conditions (temperature, extraction duration and stirring speed) were optimized by Response Surface Methodology (RSM) to maximize the antioxidant properties of the obtained extracts. The composition of the soluble fraction such as total phenolic content, protein, SH- compounds and glutathione was determined by spectrophotometry and LC-MS methods. Global antioxidant activity of extracts was determined by DPPH (radical-scavenging power), FRAP (Ferric reducing antioxidant potential) and OCR (Oxygen Consumption Rate) in model wine solution.

Results show that temperature is the key parameter for obtaining extracts with high antioxidant activity. Interestingly, we observe that the antioxidant potential does not seem to be related to the presence of a single molecule but rather to the presence of a pool of reducing compounds.

To conclude, subcritical water is a promising eco-sustainable process to obtain antioxidant compounds from wine lees. Such extracts could be used for a targeted application in oenology as well as in other sectors (food, cosmetics, pharmaceuticals).

 

1. Dimou, Charalampia, Nikolaos Kopsahelis, Aikaterini Papadaki, Seraphim Papanikolaou, Ioannis K. Kookos, Ioanna Mandala, and Apostolis A. Koutinas. ‘Wine Lees Valorization: Biorefinery Development Including Production of a Generic Fermentation Feedstock Employed for Poly(3-Hydroxybutyrate) Synthesis’. Food Research International 73 (July 2015): 81–87.
2. De Iseppi, Alberto, Matteo Marangon, Simone Vincenzi, Giovanna Lomolino, Andrea Curioni, and Benoit Divol. ‘A Novel Approach for the Valorization of Wine Lees as a Source of Compounds Able to Modify Wine Properties’. LWT 136 (January 2021): 110274.
3. Lavigne-Cruège, V. & Dubourdieu, D., 2002. Role of glutathione on development of aroma defects in dry white wines. In 13th International Enology Symposium, Trogus, H., Gafner, J., Sutterlin., Eds. International Association of Enology: Montpellier, France, pp 331-347
4. Romanet, Remy, Florian Bahut, Maria Nikolantonaki, and Régis D. Gougeon. ‘Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry’. Antioxidants 9, no. 2 (28 January 2020): 115.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Benjamin Poulain1,2, Delphine Winstel1,2, Axel Marchal1,2, Virginie Moine3, Claudia Nioi1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Biolaffort, 11 rue Aristide Berges, 33270 FLOIRAC France

Contact the author*

Keywords

Wine lees, antioxidant, subcritical water, response surface methodology

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.