terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

Abstract

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2]. Nevertheless, this by-product could become a source of interesting compounds, such as mannoprotein rich extracts (MRE). Therefore, the aim of this work was to obtain MRE from different lees, to characterize them, and to evaluate their effect on wine colour and on the phenolic composition of red wines.

Red, rosé and white wines were used as sources of lees, which were collected after the alcoholic fermentation with different Saccharomyces cerevisiae commercial varieties. The extraction of MRE was performed by physical extraction (autoclave) followed by a purification with ethanol. The protein and polysaccharidic moieties of the purified extracts were characterized by SDS-PAGE, Lowry method, HR-SEC-RID and HPLC-DAD-MS. The obtained MRE were added to a red wine (Vitis vinifera L. cv Tempranillo) and the changes in the phenolic composition and colour were analysed by HPLC-DAD-MS and triestimulus colorimetry, respectively, before and after the stabilization of the wine (involving cold treatment). Results obtained showed that the extraction yield of MRE was efficient (~ 40 mg/g wet lees) for all types of lees assayed, which supports the valorisation of wine lees as a sustainable source of MRE. Interestingly, MRE presented important structural and compositional differences, both in the protein content and in the polysaccharidic profile, although the source of lees, namely red, white and rosé wines, was not the main factor determining these differences, but the winemaking techniques or the S. cerevisiae strain employed. Furthermore, the addition of the MRE to red wine had an effect on the stabilization of wine colour and its phenolic content that rely mainly on the saccharidic characteristics of each MRE. These results pointed out that MRE from wine less could be a potential tool to improve the colloidal stability of wine phenolic compounds.

 

1. Oliveira & Duarte, 2016. Front. Environ. Sci. Eng., 10(1): 168–176.
2. De Iseppi et al., 2020. Food Res. Int., 137, 109352. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marcos, Martín-Andrés¹; Ignacio, García-Estévez¹; M. Teresa, Escribano-Bailón¹; Elvira Manjón¹

1. Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca, Salamanca, E37007, Spain

Contact the author*

Keywords

lees, mannoprotein, colour wine, phenolic compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.