terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

Abstract

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2]. Nevertheless, this by-product could become a source of interesting compounds, such as mannoprotein rich extracts (MRE). Therefore, the aim of this work was to obtain MRE from different lees, to characterize them, and to evaluate their effect on wine colour and on the phenolic composition of red wines.

Red, rosé and white wines were used as sources of lees, which were collected after the alcoholic fermentation with different Saccharomyces cerevisiae commercial varieties. The extraction of MRE was performed by physical extraction (autoclave) followed by a purification with ethanol. The protein and polysaccharidic moieties of the purified extracts were characterized by SDS-PAGE, Lowry method, HR-SEC-RID and HPLC-DAD-MS. The obtained MRE were added to a red wine (Vitis vinifera L. cv Tempranillo) and the changes in the phenolic composition and colour were analysed by HPLC-DAD-MS and triestimulus colorimetry, respectively, before and after the stabilization of the wine (involving cold treatment). Results obtained showed that the extraction yield of MRE was efficient (~ 40 mg/g wet lees) for all types of lees assayed, which supports the valorisation of wine lees as a sustainable source of MRE. Interestingly, MRE presented important structural and compositional differences, both in the protein content and in the polysaccharidic profile, although the source of lees, namely red, white and rosé wines, was not the main factor determining these differences, but the winemaking techniques or the S. cerevisiae strain employed. Furthermore, the addition of the MRE to red wine had an effect on the stabilization of wine colour and its phenolic content that rely mainly on the saccharidic characteristics of each MRE. These results pointed out that MRE from wine less could be a potential tool to improve the colloidal stability of wine phenolic compounds.

 

1. Oliveira & Duarte, 2016. Front. Environ. Sci. Eng., 10(1): 168–176.
2. De Iseppi et al., 2020. Food Res. Int., 137, 109352. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marcos, Martín-Andrés¹; Ignacio, García-Estévez¹; M. Teresa, Escribano-Bailón¹; Elvira Manjón¹

1. Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca, Salamanca, E37007, Spain

Contact the author*

Keywords

lees, mannoprotein, colour wine, phenolic compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.