Study of yeast biocatalytic activity on grape aroma compounds

Abstract

Many volatile compounds of different chemical/biochemical origin contribute to wine aroma. Certain key ‘varietal’ aroma compounds such as methoxypyrazines are formed in the grape and appear to be only scarcely influenced by fermentation. Conversely, other grape-derived compounds undergo important transformation during fermentation, so that grape varietal volatile pattern is substantially different than the one observed in the corresponding wine. While this phenomenon is generally regarded from the point of view of the cleavage of glycosidic or amino acidic precursors, recent studies highlighted the existence of other bio-catalytic processes taking place during fermentation, which could be relevant to wine aroma generation. Accordingly, in addition to enzymatic activities such as glycosidase, b-lyase, and/or acetyl-transferase, other enzymes could play a role in the expression of wine varietal aroma typicality, although these have been poorly characterized so far. Certain key volatile such as norisoprenoids (fruity attributes), lactones, (dry fruit attributes), cyclic terpenoids (minty and balsamic attributes), sesquiterpenes and benzenoids (balsamic and spicy attributes) could be associated with such processes. Some of them could also arise from the combination of yeast enzymatic and acidic rearrangements taking place at wine pH. 

The aim of this work was to investigate the biotransformation of potentially relevant grape metabolites by Saccharomyces cerevisiae. Cyclic, oxydrylated, or ketonic terpenes, sesquiterpenes, aliphatic lactones and aldehydes, hydroxyl acids and benzenoids were all investigated, as well as precursors extracts from different grapes. Biotransformations were screened by placing target compounds under incubation (at 37 °C) with yeast resting cells for 72 hours under variable conditions. After incubation, the products of biotransformation were analyzed by SPME-GC-MS and their aroma evaluated by GC-O. 

The results highlighted the occurrence of several complex transformations involving, among others, reduction of allylic carbonyl and carbon-carbon double bond, stereospecific reduction of terpenic ketones, acetylation. These reactions occurring to grape metabolites produced odoriferous molecules considered to participate to the characteristic aroma of some wines. The methodology employed in our study turned out as an effective approach to study the process of aroma generation from neutral grape into wine. As first application, this study has allowed to elucidate some aspects concerning the balsamic notes appearing in wines made with Corvina grapes.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Davide Slaghenaufi, Eleonora Troiano, Giovanna E. Felis, Maurizio Ugliano

University of Verona, Department of Biotechnology, Villa Ottolini-Lebrecht via della Pieve, 70 37029 San Floriano (VR) – Italy

Contact the author

Keywords

aroma, yeast, terpenes, biocatalysis

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

“Un grande theatro di amenissimi colli”: “tutti coltivati et abondanti di frutti eccellentissimi e di buonissime viti”

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

The bottleneck/cork interface: A key parameter for wine aging in bottle

The shelf life of wine is a major concern for the wine industry. This is particularly true for wines intended for long cellaring, which are supposed to reach their peak after an ageing period ranging from a few months to several years, or even decades. Low, controlled oxygen inputs through the closure system are generally necessary for the wine to evolve towards its optimum organoleptic characteristics. Our previous studies have already shown that the interface between the cork and the bottleneck plays a crucial role in the transfer of oxygen into the bottled wine.

Epigenetic Modulation Of Inflammation And Synaptic Plasticity By Polyphenolic Metabolites Promotes Resilience Against Stress In Mice

Introduction: Major depressive disorder is associated with abnormalities in the brain and the immune system. Chronic stress in animals showed that epigenetic and inflammatory mechanisms play important roles in mediating resilience and susceptibility to depression.

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.