Study of yeast biocatalytic activity on grape aroma compounds

Abstract

Many volatile compounds of different chemical/biochemical origin contribute to wine aroma. Certain key ‘varietal’ aroma compounds such as methoxypyrazines are formed in the grape and appear to be only scarcely influenced by fermentation. Conversely, other grape-derived compounds undergo important transformation during fermentation, so that grape varietal volatile pattern is substantially different than the one observed in the corresponding wine. While this phenomenon is generally regarded from the point of view of the cleavage of glycosidic or amino acidic precursors, recent studies highlighted the existence of other bio-catalytic processes taking place during fermentation, which could be relevant to wine aroma generation. Accordingly, in addition to enzymatic activities such as glycosidase, b-lyase, and/or acetyl-transferase, other enzymes could play a role in the expression of wine varietal aroma typicality, although these have been poorly characterized so far. Certain key volatile such as norisoprenoids (fruity attributes), lactones, (dry fruit attributes), cyclic terpenoids (minty and balsamic attributes), sesquiterpenes and benzenoids (balsamic and spicy attributes) could be associated with such processes. Some of them could also arise from the combination of yeast enzymatic and acidic rearrangements taking place at wine pH. 

The aim of this work was to investigate the biotransformation of potentially relevant grape metabolites by Saccharomyces cerevisiae. Cyclic, oxydrylated, or ketonic terpenes, sesquiterpenes, aliphatic lactones and aldehydes, hydroxyl acids and benzenoids were all investigated, as well as precursors extracts from different grapes. Biotransformations were screened by placing target compounds under incubation (at 37 °C) with yeast resting cells for 72 hours under variable conditions. After incubation, the products of biotransformation were analyzed by SPME-GC-MS and their aroma evaluated by GC-O. 

The results highlighted the occurrence of several complex transformations involving, among others, reduction of allylic carbonyl and carbon-carbon double bond, stereospecific reduction of terpenic ketones, acetylation. These reactions occurring to grape metabolites produced odoriferous molecules considered to participate to the characteristic aroma of some wines. The methodology employed in our study turned out as an effective approach to study the process of aroma generation from neutral grape into wine. As first application, this study has allowed to elucidate some aspects concerning the balsamic notes appearing in wines made with Corvina grapes.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Davide Slaghenaufi, Eleonora Troiano, Giovanna E. Felis, Maurizio Ugliano

University of Verona, Department of Biotechnology, Villa Ottolini-Lebrecht via della Pieve, 70 37029 San Floriano (VR) – Italy

Contact the author

Keywords

aroma, yeast, terpenes, biocatalysis

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for

Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Vineyard soil surveys can be costly and time consuming. The Soils Information System (SIS) provides a set of tools to do a quick evaluation of soil physical properties in the vineyard. First, a system equipped with GPS and EM38 equipment, provides a very precise DEM and a soil electrical conductivity map. Specific sampling points are located for a tractor-mounted geotechnical probe to make soil physical measurements.

Staying hydrated – not easy when it’s hot!

Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Vineyard innovative tools based on the integration of earth observation services and in-field sensors (VitiGEOSS project)

Climate change is having an unprecedented impact on the wine industry, which is one of the major agricultural sectors around the world. Global warming, combined with the variation in rainfall patterns and the increase in frequency of extreme weather events, is significantly influencing vine physiology and exposing, more frequently, plants to severe biotic and abiotic stresses. This represents a challenge for viticulturists who need to take complex decisions to adjust vineyard management and achieve oenological goals.