Study of yeast biocatalytic activity on grape aroma compounds

Abstract

Many volatile compounds of different chemical/biochemical origin contribute to wine aroma. Certain key ‘varietal’ aroma compounds such as methoxypyrazines are formed in the grape and appear to be only scarcely influenced by fermentation. Conversely, other grape-derived compounds undergo important transformation during fermentation, so that grape varietal volatile pattern is substantially different than the one observed in the corresponding wine. While this phenomenon is generally regarded from the point of view of the cleavage of glycosidic or amino acidic precursors, recent studies highlighted the existence of other bio-catalytic processes taking place during fermentation, which could be relevant to wine aroma generation. Accordingly, in addition to enzymatic activities such as glycosidase, b-lyase, and/or acetyl-transferase, other enzymes could play a role in the expression of wine varietal aroma typicality, although these have been poorly characterized so far. Certain key volatile such as norisoprenoids (fruity attributes), lactones, (dry fruit attributes), cyclic terpenoids (minty and balsamic attributes), sesquiterpenes and benzenoids (balsamic and spicy attributes) could be associated with such processes. Some of them could also arise from the combination of yeast enzymatic and acidic rearrangements taking place at wine pH. 

The aim of this work was to investigate the biotransformation of potentially relevant grape metabolites by Saccharomyces cerevisiae. Cyclic, oxydrylated, or ketonic terpenes, sesquiterpenes, aliphatic lactones and aldehydes, hydroxyl acids and benzenoids were all investigated, as well as precursors extracts from different grapes. Biotransformations were screened by placing target compounds under incubation (at 37 °C) with yeast resting cells for 72 hours under variable conditions. After incubation, the products of biotransformation were analyzed by SPME-GC-MS and their aroma evaluated by GC-O. 

The results highlighted the occurrence of several complex transformations involving, among others, reduction of allylic carbonyl and carbon-carbon double bond, stereospecific reduction of terpenic ketones, acetylation. These reactions occurring to grape metabolites produced odoriferous molecules considered to participate to the characteristic aroma of some wines. The methodology employed in our study turned out as an effective approach to study the process of aroma generation from neutral grape into wine. As first application, this study has allowed to elucidate some aspects concerning the balsamic notes appearing in wines made with Corvina grapes.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Davide Slaghenaufi, Eleonora Troiano, Giovanna E. Felis, Maurizio Ugliano

University of Verona, Department of Biotechnology, Villa Ottolini-Lebrecht via della Pieve, 70 37029 San Floriano (VR) – Italy

Contact the author

Keywords

aroma, yeast, terpenes, biocatalysis

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Cover crops sown in the inter-rows shape the weed communities in three vineyards across Italy

The use of cover crops (CCs) is widely proposed as an alternative to traditional soil management in vineyards to exploit a wide range of ecosystem services. The presence of a CC in the inter-row space is known to control spontaneous vegetation in vineyards, primarily through the biomass of the sown crop, which competes with other spontaneous species for soil resources.

The Soil Component of Terroir

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality.

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide.

Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Enhancing the sensory profile of wine by the use of different microorganism has been always a challenge in winemaking. The aim of our work was to evaluate the impact of different fermentation schemes by using mixed and pure cultures of different Saccharomyces species to Sauvignon blanc wine chemical composition and sensory profile.

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

In addition to studies on the edaphic and landscape characteristics of the environment (Dolédec, 1995), the characterization of the physiology of the vine and of parasitism during its vegetative cycle represents an essential component of knowledge and management of the terroirs.