Study of yeast biocatalytic activity on grape aroma compounds

Abstract

Many volatile compounds of different chemical/biochemical origin contribute to wine aroma. Certain key ‘varietal’ aroma compounds such as methoxypyrazines are formed in the grape and appear to be only scarcely influenced by fermentation. Conversely, other grape-derived compounds undergo important transformation during fermentation, so that grape varietal volatile pattern is substantially different than the one observed in the corresponding wine. While this phenomenon is generally regarded from the point of view of the cleavage of glycosidic or amino acidic precursors, recent studies highlighted the existence of other bio-catalytic processes taking place during fermentation, which could be relevant to wine aroma generation. Accordingly, in addition to enzymatic activities such as glycosidase, b-lyase, and/or acetyl-transferase, other enzymes could play a role in the expression of wine varietal aroma typicality, although these have been poorly characterized so far. Certain key volatile such as norisoprenoids (fruity attributes), lactones, (dry fruit attributes), cyclic terpenoids (minty and balsamic attributes), sesquiterpenes and benzenoids (balsamic and spicy attributes) could be associated with such processes. Some of them could also arise from the combination of yeast enzymatic and acidic rearrangements taking place at wine pH. 

The aim of this work was to investigate the biotransformation of potentially relevant grape metabolites by Saccharomyces cerevisiae. Cyclic, oxydrylated, or ketonic terpenes, sesquiterpenes, aliphatic lactones and aldehydes, hydroxyl acids and benzenoids were all investigated, as well as precursors extracts from different grapes. Biotransformations were screened by placing target compounds under incubation (at 37 °C) with yeast resting cells for 72 hours under variable conditions. After incubation, the products of biotransformation were analyzed by SPME-GC-MS and their aroma evaluated by GC-O. 

The results highlighted the occurrence of several complex transformations involving, among others, reduction of allylic carbonyl and carbon-carbon double bond, stereospecific reduction of terpenic ketones, acetylation. These reactions occurring to grape metabolites produced odoriferous molecules considered to participate to the characteristic aroma of some wines. The methodology employed in our study turned out as an effective approach to study the process of aroma generation from neutral grape into wine. As first application, this study has allowed to elucidate some aspects concerning the balsamic notes appearing in wines made with Corvina grapes.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Davide Slaghenaufi, Eleonora Troiano, Giovanna E. Felis, Maurizio Ugliano

University of Verona, Department of Biotechnology, Villa Ottolini-Lebrecht via della Pieve, 70 37029 San Floriano (VR) – Italy

Contact the author

Keywords

aroma, yeast, terpenes, biocatalysis

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Using GIS to assess the terroir potential of an Oregon viticultural region

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face.

Il piano regolatore delle citta’ del vino

Obiettivo generale di questo documenta è fornire un metodo di pianificazione che superi l’organizzazione delle aree rurali, ed in particolare vitate, finalizzata unicamente all’ot­timizzazione economico produttiva delle aziende, verso una pianificazione integrata degli spazi aperti.

The role of protein-phenolic interactions in the formation of red wine colloidal particles

Colloids play a crucial role in red wine quality and stability, yet their composition and formation mechanisms remain poorly understood.

The combined effects of climate, soils, and deficit irrigation on yield and quality of Touriga Nacional under high atmospheric demand in the Douro Region

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.
The aim of this study was to explore the effects of different soil characteristics combined with several deficit irrigation strategies, managed throughout ETc references and predawn leaf water potentials thresholds, on physiology, yield, and qualitative attributes on the Touriga Nacional variety under years of mild to severe water and heat stress.
The studies were conducted over seven years (2015 to 2021) in two plots of a commercial vineyard located at Quinta do Ataíde (Symington Family Estates) planted in 2011 and 2014 at 170 meters elevation, growing under three water regimes: non-irrigated (NI) and two deficit irrigation strategies (30% and 60% ETc) assessed weekly by Ψpd. The site has an annual rainfall below 500 mm, with high atmospheric demand. Climate data was collected from a weather station, located on site. Berry ripening was followed weekly for fruit analysis. At harvest, yield, vigour and pruning weight per vine were determined from 90 vines by treatment. Each season at veraison the NDVI Index was accessed by a drone. The soils physic-chemistry in the experimental blocs were analysed and grouped by SWHC. Delta C-13 analyses were also performed per treatment in two years.Irrigation had a positive effect on yield per vine, mostly due to an increase in berry and cluster weight, and fertility index through the years. A significant increase in sugar content, colour and phenols was observed with deficit irrigation in some years, but vine vigour related to soil characteristics had by far the greatest impact on quality.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.