GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Abstract

Context and purpose of the study: The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening. It is an efficient alternative to assess variability in the field and discriminate between management zones in precision viticulture, but further work is needed to completely understand the signal.

Material and methods: This work, spanning over 3 years, performed in in 8 different plots in a hillslope toposequence in Burgundy, delineates the relationships between main soil properties (gravel amount, slope, texture) and the grapevine water status assessed by δ13C and predawn leaf water potentials (Ψpd). Brix, tartaric and malic acids were also measured.

Results: The highest δ13C, indicating most severe water deficit, was recorded in gravelly soils on steep 13 slopes. The amount of sugars and malic and tartaric acids was also related to δ C. The relationship between δ 13C and Ψpd was also investigated, because the absolute values of measured δ 13C were lower than the values currently found in the literature. A mini‐meta‐analysis was performed, which 13 showed that the slope of the relationships between minimum Ψpd and δ C was stable across studies (a 13 change of 1‰ in δ C corresponded to a change of −0.2 MPa in the minimum Ψpd), while the intercept of the comparison δ 13C/Ψpd changed, probably because of genetic variations between varieties, or environmental differences. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Luca BRILLANTE (1), Olivier MATHIEU (2), Jean LEVEQUE (2), Cornelis van LEEUWEN (3), Benjamin BOIS (2,4)

(1) Dep. of Viticulture and Enology, California State University, Fresno, CA 93740 USA
(2) UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, FR
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882, Villenaved’Ornon, FR
(4) Institut Universitaire de la Vigne et du Vin ‘Jules Guyot’, Université de Bourgogne-Franche-Comté, Dijon, FR

Contact the author

Keywords

carbon isotopic discrimination; water stress; terroir; slope; organic acids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

How can historical cultivars mitigate the effects of climate change?

IFV, INRAe and the national network “Partenaires de la Sélection Vigne” representing 37 organizations from the different wine regions, have been working increasingly closely over the last 2 decades towards the preservation of the French varietal patrimony. There are approximately 600 patrimonial varieties according to INRAe and SupAgro Montpellier experts, including ancient cultivars (400) and intravarietal crossbreeds obtained since the 19th century. In the context of a drastic reduction in such varieties from the mid 1980’s in favor of mainstream varieties, it was essential to carry out an inventory of old vines and vineyards. INRAe Vassal collection plays a key role here as it holds the largest diversity available, along with a rich bibliography and herbariums, offering us the opportunity to document and double check the identity of a cultivar, consolidating the expertise of ampelographers. The work is carried out in several stages, from verifying the existence of a variety in a small region, through to rehabilitation. During this session, the authors present the process that leads to the official registration of a variety. After this, IFV selection center takes over to initiate the process of selection and propagation. A specific focus within regions such as the Alps, Champagne and the South-West will provide details of the full procedure. Bia, Bouysselet, Chardonnay rose, Mecle and the aptly named Tardif, are some of the cultivars that have followed this procedure. Furthermore, a recent regulation established by INAO on “varieties of interest for adaptation purposes” might boost uptake by growers. Since 2006, 36 historical cultivars have been registered. Most of these have been neglected in the past due to late maturity, lack of sugar and high titratable acidity at harvest time. Such characteristics are today considered as positive qualities, not only in mitigation of the effects of climate change, but also as an opportunity for restoring diversity…

Development of a GRASS-GIS application for the characterization of vineyards in the province of Trento

The physical factors that influence the grape ripening include elevation, slope, aspect, potential global radiation, sun hours and soil type of the vineyards.

Investigation of the effect of gelatine and egg albumin fining and cross-flow microfiltration on the phenolic composition of Pinotage red wine

Results indicated that cross-flow microfiltration removed similarly to fining treatments the most astringent tannins, but cross-flow microfiltration also removed up to 14 % more colour. RP-HPLC and spectrophotometric results showed that egg albumin is a softer fining treatment compared to gelatine and cross-flow microfiltration.

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.