GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Abstract

Context and purpose of the study: The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening. It is an efficient alternative to assess variability in the field and discriminate between management zones in precision viticulture, but further work is needed to completely understand the signal.

Material and methods: This work, spanning over 3 years, performed in in 8 different plots in a hillslope toposequence in Burgundy, delineates the relationships between main soil properties (gravel amount, slope, texture) and the grapevine water status assessed by δ13C and predawn leaf water potentials (Ψpd). Brix, tartaric and malic acids were also measured.

Results: The highest δ13C, indicating most severe water deficit, was recorded in gravelly soils on steep 13 slopes. The amount of sugars and malic and tartaric acids was also related to δ C. The relationship between δ 13C and Ψpd was also investigated, because the absolute values of measured δ 13C were lower than the values currently found in the literature. A mini‐meta‐analysis was performed, which 13 showed that the slope of the relationships between minimum Ψpd and δ C was stable across studies (a 13 change of 1‰ in δ C corresponded to a change of −0.2 MPa in the minimum Ψpd), while the intercept of the comparison δ 13C/Ψpd changed, probably because of genetic variations between varieties, or environmental differences. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Luca BRILLANTE (1), Olivier MATHIEU (2), Jean LEVEQUE (2), Cornelis van LEEUWEN (3), Benjamin BOIS (2,4)

(1) Dep. of Viticulture and Enology, California State University, Fresno, CA 93740 USA
(2) UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, FR
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882, Villenaved’Ornon, FR
(4) Institut Universitaire de la Vigne et du Vin ‘Jules Guyot’, Université de Bourgogne-Franche-Comté, Dijon, FR

Contact the author

Keywords

carbon isotopic discrimination; water stress; terroir; slope; organic acids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

High-altitude vineyards under extreme conditions in the PIWI context of cultivation: economic and marketing evidence from an exploratory study in Northern Italy

Viticulture has spread to unexpected locations, such as high-altitude terrain. Among these, high-altitude viticulture has captured considerable attention, not only for the uniqueness of its products and landscapes but also because it offers an effective response to climate changes
The aim of this study is to analyse and compare wineries that used Piwi varieties (acronym for the German Pilzwiderstandfähig, i.e., cryptogame-resistant) at high altitudes (between 500 and 920 m a.s.l.) with the traditional non-mountainous viticulture model.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

Understanding the impact of climate change on anthocyanin concentrations in Napa Valley Cabernet Sauvignon

Climate change is having a significant impact on the wine industry through more regular drought conditions, fires, and heat events, leading to crop loss. Furthermore, these events can reduce overall quality of the fruit, even when crop yields are not impacted. Anthocyanins are considered one of the most important classes of compounds for red wine production and are known to be sensitive to vine water status and heat events.

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.