GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Abstract

Context and purpose of the study: The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening. It is an efficient alternative to assess variability in the field and discriminate between management zones in precision viticulture, but further work is needed to completely understand the signal.

Material and methods: This work, spanning over 3 years, performed in in 8 different plots in a hillslope toposequence in Burgundy, delineates the relationships between main soil properties (gravel amount, slope, texture) and the grapevine water status assessed by δ13C and predawn leaf water potentials (Ψpd). Brix, tartaric and malic acids were also measured.

Results: The highest δ13C, indicating most severe water deficit, was recorded in gravelly soils on steep 13 slopes. The amount of sugars and malic and tartaric acids was also related to δ C. The relationship between δ 13C and Ψpd was also investigated, because the absolute values of measured δ 13C were lower than the values currently found in the literature. A mini‐meta‐analysis was performed, which 13 showed that the slope of the relationships between minimum Ψpd and δ C was stable across studies (a 13 change of 1‰ in δ C corresponded to a change of −0.2 MPa in the minimum Ψpd), while the intercept of the comparison δ 13C/Ψpd changed, probably because of genetic variations between varieties, or environmental differences. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Luca BRILLANTE (1), Olivier MATHIEU (2), Jean LEVEQUE (2), Cornelis van LEEUWEN (3), Benjamin BOIS (2,4)

(1) Dep. of Viticulture and Enology, California State University, Fresno, CA 93740 USA
(2) UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, FR
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882, Villenaved’Ornon, FR
(4) Institut Universitaire de la Vigne et du Vin ‘Jules Guyot’, Université de Bourgogne-Franche-Comté, Dijon, FR

Contact the author

Keywords

carbon isotopic discrimination; water stress; terroir; slope; organic acids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Water use efficiency of Chardonnay under different grafting combinations in the viticultural area of Franciacorta

Drought poses a challenge to future viticulture, exacerbated by climate change, which increases the frequency and severity of water shortages.

Caratteristiche fisico-chimiche dei suoli coltivati a vite e loro influenza nella diffusione del mal dell’esca

Il mal dell’esca é una malattia della vite della quale sono state studiate sintomatologia, eziologia, patogenesi ed epidemiologia. Essendo una malattia che colpisce soprattutto la parte epigea delle piante, le caratteristiche dei suoli non sono mai state considerate fra le responsabili della sua insorgenza e diffusione.

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.