GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Abstract

Context and purpose of the study: The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening. It is an efficient alternative to assess variability in the field and discriminate between management zones in precision viticulture, but further work is needed to completely understand the signal.

Material and methods: This work, spanning over 3 years, performed in in 8 different plots in a hillslope toposequence in Burgundy, delineates the relationships between main soil properties (gravel amount, slope, texture) and the grapevine water status assessed by δ13C and predawn leaf water potentials (Ψpd). Brix, tartaric and malic acids were also measured.

Results: The highest δ13C, indicating most severe water deficit, was recorded in gravelly soils on steep 13 slopes. The amount of sugars and malic and tartaric acids was also related to δ C. The relationship between δ 13C and Ψpd was also investigated, because the absolute values of measured δ 13C were lower than the values currently found in the literature. A mini‐meta‐analysis was performed, which 13 showed that the slope of the relationships between minimum Ψpd and δ C was stable across studies (a 13 change of 1‰ in δ C corresponded to a change of −0.2 MPa in the minimum Ψpd), while the intercept of the comparison δ 13C/Ψpd changed, probably because of genetic variations between varieties, or environmental differences. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Luca BRILLANTE (1), Olivier MATHIEU (2), Jean LEVEQUE (2), Cornelis van LEEUWEN (3), Benjamin BOIS (2,4)

(1) Dep. of Viticulture and Enology, California State University, Fresno, CA 93740 USA
(2) UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, FR
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882, Villenaved’Ornon, FR
(4) Institut Universitaire de la Vigne et du Vin ‘Jules Guyot’, Université de Bourgogne-Franche-Comté, Dijon, FR

Contact the author

Keywords

carbon isotopic discrimination; water stress; terroir; slope; organic acids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Physical-chemical and sensory characterization of wine made with the cultivar syrah produced in a double pruning system

In recent years, the consumption of fine wines in Brazil has increased significantly, a phenomenon that is also reflected in the expansion of production to new regions. In the brazilian southeast for example, the so-called “winter wines” are being produced, through management in two cycles, one of formation and one of production, with two prunings and one harvest per year, a technique known as double pruning, with vineyards established at altitudes close to or above 1,000 m above sea level.

Exploring the impact of yeast derivatives on aromatic and sensory profiles of white and red wines: a multifactorial analysis

Specific inactivated yeast derivatives (SYDS) are obtained from s. cerevisiae yeasts by various processes (thermal, mechanical, and enzymatic) and have diverse oenological applications to improve wine quality. However, different impacts on wine sensory and aromas were reported, depending on syds types and fractions, wine matrices, and experimental settings. Few works have examined the impact of SYDS on aromas considering also those on wine macromolecules influencing organoleptic properties.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Citizen science for promoting a disease-resistant grape variety through a wine competition

The societal pressure to reduce the use of pesticides in Switzerland is steadily increasing. Viticulture is particularly in focus due to the frequent use of fungicides to combat downy and powdery mildew.

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.