GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

Abstract

Context and purpose of the study: The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening. It is an efficient alternative to assess variability in the field and discriminate between management zones in precision viticulture, but further work is needed to completely understand the signal.

Material and methods: This work, spanning over 3 years, performed in in 8 different plots in a hillslope toposequence in Burgundy, delineates the relationships between main soil properties (gravel amount, slope, texture) and the grapevine water status assessed by δ13C and predawn leaf water potentials (Ψpd). Brix, tartaric and malic acids were also measured.

Results: The highest δ13C, indicating most severe water deficit, was recorded in gravelly soils on steep 13 slopes. The amount of sugars and malic and tartaric acids was also related to δ C. The relationship between δ 13C and Ψpd was also investigated, because the absolute values of measured δ 13C were lower than the values currently found in the literature. A mini‐meta‐analysis was performed, which 13 showed that the slope of the relationships between minimum Ψpd and δ C was stable across studies (a 13 change of 1‰ in δ C corresponded to a change of −0.2 MPa in the minimum Ψpd), while the intercept of the comparison δ 13C/Ψpd changed, probably because of genetic variations between varieties, or environmental differences. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Luca BRILLANTE (1), Olivier MATHIEU (2), Jean LEVEQUE (2), Cornelis van LEEUWEN (3), Benjamin BOIS (2,4)

(1) Dep. of Viticulture and Enology, California State University, Fresno, CA 93740 USA
(2) UMR CNRS/uB 6282 Biogéosciences, Université de Bourgogne-Franche-Comté, Dijon, FR
(3) EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, ISVV, 33882, Villenaved’Ornon, FR
(4) Institut Universitaire de la Vigne et du Vin ‘Jules Guyot’, Université de Bourgogne-Franche-Comté, Dijon, FR

Contact the author

Keywords

carbon isotopic discrimination; water stress; terroir; slope; organic acids

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.

Enhancing vine resilience and protecting grape production in Mediterranean vineyards: the role of anti-hail shading nets and kaolin applications

Climate change and rising temperatures present a substantial challenge to viticulture, intensifying summer heat stress and accelerating berry ripening.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.