OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Abstract

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions. Previous studies linking the effect of native microbial communities to sensory relevant aroma compounds with their interactive properties have been vastly unsuccessful to date. Partially because studies relied on relatively few isolated strains or chemical compounds, which may be not sufficient to fully understand this complex picture.

Native microbial communities from different Riesling vineyards were studied over multiple experiments during vinification as well as over a two-year to reveal their effects on chemical and sensory composition of spontaneously fermented Riesling wines.

We demonstrate that by combining modern untargeted high-throughput omics technologies and statistical approaches, it is possible to look into samples in situ in the actual natural environment. Our results indicate that both vineyard and winery microbial communities are found to play significant roles in wine. Microbial communities within the fermenting were strongly influenced by vineyard of origin.

These population dynamics are consequently translated into diverse sensory properties through sensory relevant chemical interactions. We found that both sensory and chemical compositions were heavily influenced by the microbial community composition during the vinification as well as the vineyard and the year. Such methodologies allow to find novel microbial and chemical patterns which could be further tested with targeted studies. In addition to deconstructing the microbial community composition in complex natural environment, we leverage on shotgun metagenomic data to undertake the functional analysis of the microbial community during wine fermentation. In the future, multiomics approaches will be essential for fully discovering the complexity of biological networks, where microbes, host and chemical compounds interact with human sensory perceptions. These developed approaches benefit any industry that works with complex biological interactions.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Kimmo SIREN Sarah Siu Tze Mak, M. Thomas P. Gilbert, Ulrich Fischer

Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Co-penhagen, Denmark
Institute for Viticulture & Oenology, DLR Rheinpfalz, Neustadt/Wstr.,Germany

Contact the author

Keywords

Metagenomics, Metabarcoding, Chemical interactions, Machine learning 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain.

Evolution of grape aromatic composition in cv. Ugni blanc

Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar

Ampelograpic and genetic characterisation of grapevine genetic resources from Ozalj-Vivodina region (Croatia)

Ozalj- vivodina region is small vine growing area (only about 100 hectares of vineyards), but with significant number of old, ancient vineyards planted between 50 and 100 years ago. Trend of abandoning or replanting ancient vineyards takes place for the last 30 years. This trend results in grapevine germplasm erosion because traditional varieties are replaced with well known international varieties.Few known traditional varieties are dominantly present in ancient vineyards together with many others of unknown identity. Historical data about prevalence and characteristic of varieties on this area are very poor.

Ellagitannin profile of red and white wines aged with oak chips

Wine aging with oak chips is nowadays a common alternative to barrel aging, aiming to improve wine quality through the fast extraction of wood derived compounds. From the pool of wood phenols, ellagitannins have been reported to have the most significant impact on the wine’s organoleptic profile. Their final concentration in wines is influenced by several factors, with toasting level considered as one of the most important.

Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

The way to manage the vineyard soils has certainly changed in Spain during the last years. Traditionally, the vineyards were tilled, but this growing technique has been replaced in some vineyards by the bare soil with herbicide