OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Abstract

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions. Previous studies linking the effect of native microbial communities to sensory relevant aroma compounds with their interactive properties have been vastly unsuccessful to date. Partially because studies relied on relatively few isolated strains or chemical compounds, which may be not sufficient to fully understand this complex picture.

Native microbial communities from different Riesling vineyards were studied over multiple experiments during vinification as well as over a two-year to reveal their effects on chemical and sensory composition of spontaneously fermented Riesling wines.

We demonstrate that by combining modern untargeted high-throughput omics technologies and statistical approaches, it is possible to look into samples in situ in the actual natural environment. Our results indicate that both vineyard and winery microbial communities are found to play significant roles in wine. Microbial communities within the fermenting were strongly influenced by vineyard of origin.

These population dynamics are consequently translated into diverse sensory properties through sensory relevant chemical interactions. We found that both sensory and chemical compositions were heavily influenced by the microbial community composition during the vinification as well as the vineyard and the year. Such methodologies allow to find novel microbial and chemical patterns which could be further tested with targeted studies. In addition to deconstructing the microbial community composition in complex natural environment, we leverage on shotgun metagenomic data to undertake the functional analysis of the microbial community during wine fermentation. In the future, multiomics approaches will be essential for fully discovering the complexity of biological networks, where microbes, host and chemical compounds interact with human sensory perceptions. These developed approaches benefit any industry that works with complex biological interactions.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Kimmo SIREN Sarah Siu Tze Mak, M. Thomas P. Gilbert, Ulrich Fischer

Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Co-penhagen, Denmark
Institute for Viticulture & Oenology, DLR Rheinpfalz, Neustadt/Wstr.,Germany

Contact the author

Keywords

Metagenomics, Metabarcoding, Chemical interactions, Machine learning 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

“Terroir” and climate change in Franconia / Germany

Franconia which is a “cool climate” winegrowing region is well known for its fruity white wines. The most common grape cultivars are Silvaner and Mueller-Thurgau.

The drought, the temperature, and the time: drivers of osmotic adjustment?

Context and purpose of the study. Leaf osmotic adjustment (i.e., active accumulation of osmolytes in the cells) has been reported in grapevines in response to drought and as a natural process throughout the growing season (seasonal osmotic adjustment).

Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen status. Depending on the color of the grapes (red or white) and the type of wine produced, the desired level of vine water and nitrogen status for optimum wine quality is different. Little investigation has been carried out concerning these factors and their potential influence on sparkling wine quality on two vintages. In this study vine water and nitrogen status were assessed at a very high density and related to grape composition and berry weight. Through statistical analyses, the major factors driving grape quality potential on Pinot noir in Champagne were highlighted.

Impact des systèmes de conduite, de la gestion des sols et de la capacité de rétention d’eau des sols sur l’état hydrique de la vigne à Cognac

Dans le cadre de TerclimPro 2025, Sébastien Zito a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/9161

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…