OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Chemical and Biochemical reactions, including grape and wines microorganisms impact 9 Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Abstract

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions. Previous studies linking the effect of native microbial communities to sensory relevant aroma compounds with their interactive properties have been vastly unsuccessful to date. Partially because studies relied on relatively few isolated strains or chemical compounds, which may be not sufficient to fully understand this complex picture.

Native microbial communities from different Riesling vineyards were studied over multiple experiments during vinification as well as over a two-year to reveal their effects on chemical and sensory composition of spontaneously fermented Riesling wines.

We demonstrate that by combining modern untargeted high-throughput omics technologies and statistical approaches, it is possible to look into samples in situ in the actual natural environment. Our results indicate that both vineyard and winery microbial communities are found to play significant roles in wine. Microbial communities within the fermenting were strongly influenced by vineyard of origin.

These population dynamics are consequently translated into diverse sensory properties through sensory relevant chemical interactions. We found that both sensory and chemical compositions were heavily influenced by the microbial community composition during the vinification as well as the vineyard and the year. Such methodologies allow to find novel microbial and chemical patterns which could be further tested with targeted studies. In addition to deconstructing the microbial community composition in complex natural environment, we leverage on shotgun metagenomic data to undertake the functional analysis of the microbial community during wine fermentation. In the future, multiomics approaches will be essential for fully discovering the complexity of biological networks, where microbes, host and chemical compounds interact with human sensory perceptions. These developed approaches benefit any industry that works with complex biological interactions.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Kimmo SIREN Sarah Siu Tze Mak, M. Thomas P. Gilbert, Ulrich Fischer

Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Co-penhagen, Denmark
Institute for Viticulture & Oenology, DLR Rheinpfalz, Neustadt/Wstr.,Germany

Contact the author

Keywords

Metagenomics, Metabarcoding, Chemical interactions, Machine learning 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

A sundial vineyard: impact of row density and orientation on cv. Cabernet-Sauvignon physiology and grape composition, insights to face a climate change scenario

An experimental vineyard with a radial array was planted in 2018, to provide valuable information on the relationship between orientation and planting density on plant physiology and cluster microclimate, and the consequent impacts on grape secondary metabolites, including aromas and polyphenols.

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average

Campania region grapevine patrimony: a determination of the heat requirement of 19 nearly all-native ultivars. Nine years of observations.

Nous avons peu d’informations sur les cépages cultivés dans la région de la Campania (sud de l’ltalie). En particulier insuffisant sont les études sur les besoins thermiques de tels cépages.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Dimethyl sulfide (DMS) is a low molecular weight sulfur compound produced in wine during aging by the chemical degradation of S-Methyl-L-methionine (SMM). Investigating the aromatic profile of Amarone commercial wines from different wineries, it was found that DMS presented a high variation in concentration across wine samples ranging from 2.88 to 64.34 μg/L, which potentially can