terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Abstract

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported. The objective of this study was to identify the aroma compounds and sensorial descriptors enabling a discrimination of the five sub-regions, and to evaluate their link with the soil and climate characteristics of the geographical areas. The analyses were carried out on two vintages (2018 and 2019) on wines produced from a blend of the four main varieties (Syrah, Grenache, Carignan and Mourvèdre). Aroma compounds were analyzed by HS-SPME-GC-MS in full scan mode and 44 compounds had significantly different concentrations among the zones. Several chemical families of compounds were highlighted as being more significantly present in wines of certain regions. The significant presence of those varietal (e.g. linalool, C13-norisoprenoids) or fermentative aromas (higher alcohols and ethyl and acetate esters) in a particular geographical area could be linked to soil features, climate vintage conditions and topographical traits (sunlight exposition, altitude, etc.). Sixteen sensorial descriptors were assessed and wines were compared by Quantitative Descriptive Analysis (QDA) profile method. Descriptors that appeared significant were linked to some aromatic com-pounds identified (e.g. β-damascenone and cooked red fruits) as well as related between each other (e.g. humus and amylic). In a process of subdivision of the denomination, this study allowed a first chemical and sensorial characterization of these terroirs, proposing valuable elements in the definition of the typicity of wines.

 

1. Cadot, Y., Caillé, S., Thiollet-Scholtus, M., Samson, A., Barbeau, G., & Cheynier, V. (2012). Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Quality and Preference, 24(1), 48–58. https://doi.org/10.1016/j.foodqual.2011.08.012
2. Di Paola-Naranjo, R. D., Baroni, M. V., Podio, N. S., Rubinstein, H. R., Fabani, M. P., Badini, R. G., Inga, M., Ostera, H. A., Ca-gnoni, M., Gallegos, E., Gautier, E., Peral-García, P., Hoogewerff, J., & Wunderlin, D. A. (2011). Fingerprints for Main Varieties of Argentinean Wines: Terroir Differentiation by Inorganic, Organic, and Stable Isotopic Analyses Coupled to Chemometrics. Journal of Agricultural and Food Chemistry, 59(14), 7854–7865. https://doi.org/10.1021/jf2007419
3. Kustos, M., Gambetta, J. M., Jeffery, D. W., Heymann, H., Goodman, S., & Bastian, S. E. P. (2020). A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Research International, 130, 108903. https://doi.org/10.1016/j.foodres.2019.108903
4. Van Leeuwen, C., Barbe, J.-C., Darriet, P., Geffroy, O., Gomès, E., Guillaumie, S., Helwi, P., Laboyrie, J., Lytra, G., Le Menn, N., Marchand, S., Picard, M., Pons, A., Schüttler, A., & Thibon, C. (2020). Recent advancements in understanding the terroir effect on aromas in grapes and wines: This article is published in cooperation with the XIIIth International Terroir Congress No-vember 17-18 2020, Adelaide, Australia. Guests editors: Cassandra Collins and Roberta De Bei. OENO One, 54(4). https://doi. org/10.20870/oeno-one.2020.54.4.3983

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Argentero A.1, Caillé S.1, Nolleau V.1, Godet T.1, Mouls L.1, Rigou P.1

1. SPO, INRAE, L’Institut Agro Montpellier, Université de Montpellier, Montpellier, France

Contact the author*

Keywords

red-blended-wine , molecular marker , Aroma compound , Sensorial attribute

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.