terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Abstract

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported. The objective of this study was to identify the aroma compounds and sensorial descriptors enabling a discrimination of the five sub-regions, and to evaluate their link with the soil and climate characteristics of the geographical areas. The analyses were carried out on two vintages (2018 and 2019) on wines produced from a blend of the four main varieties (Syrah, Grenache, Carignan and Mourvèdre). Aroma compounds were analyzed by HS-SPME-GC-MS in full scan mode and 44 compounds had significantly different concentrations among the zones. Several chemical families of compounds were highlighted as being more significantly present in wines of certain regions. The significant presence of those varietal (e.g. linalool, C13-norisoprenoids) or fermentative aromas (higher alcohols and ethyl and acetate esters) in a particular geographical area could be linked to soil features, climate vintage conditions and topographical traits (sunlight exposition, altitude, etc.). Sixteen sensorial descriptors were assessed and wines were compared by Quantitative Descriptive Analysis (QDA) profile method. Descriptors that appeared significant were linked to some aromatic com-pounds identified (e.g. β-damascenone and cooked red fruits) as well as related between each other (e.g. humus and amylic). In a process of subdivision of the denomination, this study allowed a first chemical and sensorial characterization of these terroirs, proposing valuable elements in the definition of the typicity of wines.

 

1. Cadot, Y., Caillé, S., Thiollet-Scholtus, M., Samson, A., Barbeau, G., & Cheynier, V. (2012). Characterisation of typicality for wines related to terroir by conceptual and by perceptual representations. An application to red wines from the Loire Valley. Food Quality and Preference, 24(1), 48–58. https://doi.org/10.1016/j.foodqual.2011.08.012
2. Di Paola-Naranjo, R. D., Baroni, M. V., Podio, N. S., Rubinstein, H. R., Fabani, M. P., Badini, R. G., Inga, M., Ostera, H. A., Ca-gnoni, M., Gallegos, E., Gautier, E., Peral-García, P., Hoogewerff, J., & Wunderlin, D. A. (2011). Fingerprints for Main Varieties of Argentinean Wines: Terroir Differentiation by Inorganic, Organic, and Stable Isotopic Analyses Coupled to Chemometrics. Journal of Agricultural and Food Chemistry, 59(14), 7854–7865. https://doi.org/10.1021/jf2007419
3. Kustos, M., Gambetta, J. M., Jeffery, D. W., Heymann, H., Goodman, S., & Bastian, S. E. P. (2020). A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Research International, 130, 108903. https://doi.org/10.1016/j.foodres.2019.108903
4. Van Leeuwen, C., Barbe, J.-C., Darriet, P., Geffroy, O., Gomès, E., Guillaumie, S., Helwi, P., Laboyrie, J., Lytra, G., Le Menn, N., Marchand, S., Picard, M., Pons, A., Schüttler, A., & Thibon, C. (2020). Recent advancements in understanding the terroir effect on aromas in grapes and wines: This article is published in cooperation with the XIIIth International Terroir Congress No-vember 17-18 2020, Adelaide, Australia. Guests editors: Cassandra Collins and Roberta De Bei. OENO One, 54(4). https://doi. org/10.20870/oeno-one.2020.54.4.3983

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Argentero A.1, Caillé S.1, Nolleau V.1, Godet T.1, Mouls L.1, Rigou P.1

1. SPO, INRAE, L’Institut Agro Montpellier, Université de Montpellier, Montpellier, France

Contact the author*

Keywords

red-blended-wine , molecular marker , Aroma compound , Sensorial attribute

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].