terclim by ICS banner
IVES 9 IVES Conference Series 9 CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Abstract

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.

The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

Significant variations were observed in temperature and rainfall patterns among the different vintage years. The response of grape secondary metabolism to abiotic stress, with particular emphasis on polyphenolic profile of the berries was evaluated using spectrophotometry and HPLC.

The results highlighted significant differences among the vintages for each vineyard as to the berry weight and the contents of the several classes of polyphenols. 2022 Vintage distinguished by a series of extreme conditions in terms of high temperature and low rainfall, showed low berry weight and skin contents of almost all polyphenols, especially for the southwest exposed vineyards. The seeds, on the other hand, exhibited higher amounts of polyphenols, possibly due to their greater extractability. Berry weight being equal, fresh conditions during the green phase until veraison, followed by dry and hot pre harvest period privileged phenolics mainly in the berries of the southeast vineyard. Younger vineyard showed more result variability through the years.

The intensity and mainly the timing of meteorological fluctuations affected the final content in phenolics of Grignolino grapes. In hilly environment, conditions of limited water availability and high temperature, that lately are characterizing the second part of berry development, seem to support the grape quality of Grignolino, a cultivar of medium-late ripening, by limiting the differences on bunch ripening, allowing a greater accumulation of secondary metabolites, but maintaining at the same time an optimum balance sugar/acidity.

 

1. Bagagiolo, G., Rabino, D., Biddoccu, M., Nigrelli, G., Berro, D. C., Mercalli, L., et al. (2021). Effects of inter-annual climate variability on grape harvest timing in rainfed hilly vineyards of Piedmont (NW Italy). Italian Journal of Agrometeorology, 37–49. 
2. Rienth, M., Vigneron, N., Darriet, P., Sweetman, C., Burbidge, C., Bonghi, C., et al. (2021). Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario–a review. Frontiers in Plant Science 12, 262.
3. van Leeuwen, C., and Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Eco-nomics 11, 150–167.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Maurizio Petrozziello1, Federica Bonello1, Mario Ronco2,3, Andriani Asproudi1*

1. CREA – CREA-VE: Council for Agricultural Research and Economics- Research centre for Viticulture and Enology. Via P. Micca 35, 14100 Asti, Italy.
2. Associazione Monferace, Castello di Ponzano Monferrato, Piazza Vittorio Veneto 1, Ponzano Monferrato – 15022 Alessan-dria, Italy.
3. Wine consulting Mario Ronco, Piazza Stazione 25, Moncalvo – 14036 Asti, Italy.

Contact the author*

Keywords

meteorological conditions, vineyards age, vineyard aspect, grape polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).