terclim by ICS banner
IVES 9 IVES Conference Series 9 CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Abstract

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.

The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

Significant variations were observed in temperature and rainfall patterns among the different vintage years. The response of grape secondary metabolism to abiotic stress, with particular emphasis on polyphenolic profile of the berries was evaluated using spectrophotometry and HPLC.

The results highlighted significant differences among the vintages for each vineyard as to the berry weight and the contents of the several classes of polyphenols. 2022 Vintage distinguished by a series of extreme conditions in terms of high temperature and low rainfall, showed low berry weight and skin contents of almost all polyphenols, especially for the southwest exposed vineyards. The seeds, on the other hand, exhibited higher amounts of polyphenols, possibly due to their greater extractability. Berry weight being equal, fresh conditions during the green phase until veraison, followed by dry and hot pre harvest period privileged phenolics mainly in the berries of the southeast vineyard. Younger vineyard showed more result variability through the years.

The intensity and mainly the timing of meteorological fluctuations affected the final content in phenolics of Grignolino grapes. In hilly environment, conditions of limited water availability and high temperature, that lately are characterizing the second part of berry development, seem to support the grape quality of Grignolino, a cultivar of medium-late ripening, by limiting the differences on bunch ripening, allowing a greater accumulation of secondary metabolites, but maintaining at the same time an optimum balance sugar/acidity.

 

1. Bagagiolo, G., Rabino, D., Biddoccu, M., Nigrelli, G., Berro, D. C., Mercalli, L., et al. (2021). Effects of inter-annual climate variability on grape harvest timing in rainfed hilly vineyards of Piedmont (NW Italy). Italian Journal of Agrometeorology, 37–49. 
2. Rienth, M., Vigneron, N., Darriet, P., Sweetman, C., Burbidge, C., Bonghi, C., et al. (2021). Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario–a review. Frontiers in Plant Science 12, 262.
3. van Leeuwen, C., and Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Eco-nomics 11, 150–167.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Maurizio Petrozziello1, Federica Bonello1, Mario Ronco2,3, Andriani Asproudi1*

1. CREA – CREA-VE: Council for Agricultural Research and Economics- Research centre for Viticulture and Enology. Via P. Micca 35, 14100 Asti, Italy.
2. Associazione Monferace, Castello di Ponzano Monferrato, Piazza Vittorio Veneto 1, Ponzano Monferrato – 15022 Alessan-dria, Italy.
3. Wine consulting Mario Ronco, Piazza Stazione 25, Moncalvo – 14036 Asti, Italy.

Contact the author*

Keywords

meteorological conditions, vineyards age, vineyard aspect, grape polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.