terclim by ICS banner
IVES 9 IVES Conference Series 9 MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Abstract

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1]. Moreover, triggered by the presence of ethanol in wines, the Marangoni effect increases the exhaust of flavored molecules in the glass headspace [2]. In addition, ethanol is known to modify the orthonasal detection threshold of aromas (and especially the fruity aromas [2]), and it can also trigger the trigeminal system leading to tingling and/or warm sensation [2]. Monitoring gaseous ethanol, in space and time, in the headspace of wine glasses is therefore crucial to better understand the neuro-physicochemical mechanisms responsible for aroma release and flavour perception.

For this purpose, micro-gas chromatography was used in the past to simultaneously monitor gas-phase ethanol and CO₂ in the headspace of champagne glasses, but with a relatively poor temporal resolution leading to a one-minute data sampling interval [3], [4]. Since the last decade at GSMA (Groupe de Spectrométrie Moléculaire et Atmosphérique), tunable diode laser absorption spectroscopy has shown to be a well-adapted method to accurately monitor gas-phase CO₂ in the headspace of glasses poured with champagne [5]. The tunability of semiconductor laser with current modulation provides CO₂ monitoring with a high temporal resolution of 42 measurements per seconds. Lastly, thanks to the recent interband cascade laser (ICL) technology, the CO₂ sensor was upgraded to monitor gaseous ethanol. This new quantum laser source, combined with previous technology developed for the monitoring of gas-phase CO₂, al-lowed us to simultaneously monitor gas-phase CO₂ and ethanol under standard still wine and sparkling wine tasting conditions. The first data sets obtained in the headspace of a glass poured with a standard brut-labelled Champagne wine are presented.

 

1. G. Liger-Belair and C. Cilindre, “Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines,” Annu. Rev. Anal. Chem., vol. 14, pp. 21–46, 2021.
2. C. M. Ickes and K. R. Cadwallader, “Effects of Ethanol on Flavor Perception in Alcoholic Beverages,” Chemosens. Percept., vol. 10, no. 4, pp. 119–134, Dec. 2017.
3. C. Cilindre, A. Conreux, and G. Liger-Belair, “Simultaneous monitoring of gaseous CO₂ and ethanol above champagne glasses via micro-gas chromatography (μGC),” J. Agric. Food Chem., vol. 59, no. 13, pp. 7317–7323, 2011.
4. G. Liger-Belair, M. Bourget, H. Pron, G. Polidori, and C. Cilindre, “Monitoring gaseous CO 2 and ethanol above champagne glasses: Flute versus coupe, and the role of temperature,” PLoS One, vol. 7, no. 2, pp. 1–8, 2012,.
5. A. L. Moriaux et al., “How does gas-phase CO₂ evolve in the headspace of champagne glasses?,” J. Agric. Food Chem., vol. 69, no. 7, pp. 2262–2270, 2021.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Florian Lecasse¹, Raphaël Vallon¹, Vincent Alfonso¹, Bertand Parvitte¹, Clara Cilindre¹, Virginie Zeninari¹, Gérard Liger-Belair¹

1. Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 7331, UFR Sciences Exactes et Naturelles

Contact the author*

Keywords

Ethanol, Champagne, Interband Cascade Laser, Spectroscopy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.