GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Effect of topography on vine evapotranspiration and water status in hillside vineyards

Effect of topography on vine evapotranspiration and water status in hillside vineyards

Abstract

Context and purpose of the study – Many winegrape regions have hillside vineyards, where vine water use is affected by vine age, density and health, canopy size, row orientation, irrigation practices, and by block slope and aspect. Topography affects the amount of solar radiation the vines receive, which is a major “driving force” of evapotranspiration (ET). Nearly all crop ET studies have been conducted on level ground, where the contributions of weather and crop factors to ET are well known. Information on winegrape ET on hillside terrains is scarce but much needed, as growers seek more resource‐efficient production practices and vine water stress monitoring techniques to manage grapes quality, and as future water supplies become increasingly variable, limited and costly. Our UC team measured the seasonal dynamics of actual ET (ETa) and vine water status in two similar vineyard blocks with north and south aspects during three consecutive seasons, with the aim to inform irrigation management decisions.

Material and methods ‐ The vineyard blocks are located in El Dorado County, California, and both are Cabernet sauvignon on 3309 rootstock, planted in 2000 with VSP trellis on approximately 24% (north‐ facing) and 25% (south‐facing) slopes, where the grower managed the irrigation. We determined ETa in the 2016 to 2018 seasons using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment to measure sensible heat flux (H). Reference ET (ETo) data was taken from the nearest weather station to calculate actual crop coefficients (Ka). We also periodically measured midday stem water potential (ΨSTEM). 

Results ‐ The north and south blocks had similar seasonal ETa, but the water use dynamic varied with the slope aspect. Until early May, ETa was slightly higher in the south (Ka between 0.5 and 0.9) than the north block (Ka between 0.4 and 0.7). From mid‐May to June and mid‐July to August, the north block had higher ETa (Ka ~ 0.65 versus 0.55 in the south slope). A progressive decrease in water use was observed from late June onwards in both blocks, with Ka of ~ 0.4 and 0.3 in August and September, respectively. Early and late in the season, we measured lower net radiation in the north block, likely due to the greater incidence angle of the incoming solar radiation. Late in the season, the north block had lower ΨSTEM (more stress) in 2016 and 2017, and the south block had lower ΨSTEM in 2018. Our results show that monitoring ETa and vine water status can inform irrigation and water stress management in hillside vineyards. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Daniele ZACCARIA (1), Lynn WUNDERLICH (2), Giulia MARINO (1), Kristen SHAPIRO (1), Sloane RICE (1), Kenneth SHACKEL (3), Richard SNYDER (1)

(1) Department of Land, Air and Water Resources, UC-Davis, One Shields Avenue, Davis, CA. 95616 USA.
(2) UCCE, 311 Fair Lane, Placerville, CA. 95667 USA.
(3) Department of Plant Sciences, UC-Davis, One Shields Avenue, Davis, CA. 95616, USA.

Contact the author

Keywords

Energy balance, actual water use, slope, crop coefficient, stem water potential

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Interactions « Terroir x Vigne » : facteurs de maîtrise du micro-environnement et de la physiologie de la plante en rapport avec le niveau de maturité et les éléments de typicité

Le vigneron européen est de plus en plus à la recherche de la valorisation de son terroir par la personnalisation de la typicité de ses produits. Dans ce contexte, il est apparu depuis longtemps que la part des facteurs technologiques ou humains est d’une importance capitale face aux conditions de l’envirormement naturel. Le terroir se construit plus qu’il ne se subit.

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Prise en compte de la notion de terroir dans les AOC en France : Aspects Culturels

“The vine and the wine are great mysteries. Only the vine makes us intelligible what is the true flavor of the earth”. Colette. The notion of terroir has always been the basis of the notion of AOC from which it is inseparable. It is moreover the definition of the production zone which was at the start of the attempts to set up the designation of origin, at the beginning of the century, after the phylloxera crisis.

Aptitude du cépage Chenin à l’élaboration de vins liquoreux en relation avec certaines unités terroirs de base de A.O.C. Coteaux du Layon

Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.Massif and the first sedimentary formations of the western aureole of the Paris Basin. If it is found all over the world (California, Israel, South Africa), it is in this region that it best asserts its identity. It is one of the most interesting grape varieties due to the variety and complexity of the wines it can produce. It can give very dry or very sweet, still or sparkling wines, fresh when young and sublime when ageing, expressing the characteristics of each vintage as much as those of the terroir. The Chenin is a faithful witness of its geographical, geological, pedological and climatic environment; he is the foil of the land. It has strong aptitudes for the production of sweet wines conditioned by overripe grapes often botrytised in the AOC Coteaux du Layon.