GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Effect of topography on vine evapotranspiration and water status in hillside vineyards

Effect of topography on vine evapotranspiration and water status in hillside vineyards

Abstract

Context and purpose of the study – Many winegrape regions have hillside vineyards, where vine water use is affected by vine age, density and health, canopy size, row orientation, irrigation practices, and by block slope and aspect. Topography affects the amount of solar radiation the vines receive, which is a major “driving force” of evapotranspiration (ET). Nearly all crop ET studies have been conducted on level ground, where the contributions of weather and crop factors to ET are well known. Information on winegrape ET on hillside terrains is scarce but much needed, as growers seek more resource‐efficient production practices and vine water stress monitoring techniques to manage grapes quality, and as future water supplies become increasingly variable, limited and costly. Our UC team measured the seasonal dynamics of actual ET (ETa) and vine water status in two similar vineyard blocks with north and south aspects during three consecutive seasons, with the aim to inform irrigation management decisions.

Material and methods ‐ The vineyard blocks are located in El Dorado County, California, and both are Cabernet sauvignon on 3309 rootstock, planted in 2000 with VSP trellis on approximately 24% (north‐ facing) and 25% (south‐facing) slopes, where the grower managed the irrigation. We determined ETa in the 2016 to 2018 seasons using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment to measure sensible heat flux (H). Reference ET (ETo) data was taken from the nearest weather station to calculate actual crop coefficients (Ka). We also periodically measured midday stem water potential (ΨSTEM). 

Results ‐ The north and south blocks had similar seasonal ETa, but the water use dynamic varied with the slope aspect. Until early May, ETa was slightly higher in the south (Ka between 0.5 and 0.9) than the north block (Ka between 0.4 and 0.7). From mid‐May to June and mid‐July to August, the north block had higher ETa (Ka ~ 0.65 versus 0.55 in the south slope). A progressive decrease in water use was observed from late June onwards in both blocks, with Ka of ~ 0.4 and 0.3 in August and September, respectively. Early and late in the season, we measured lower net radiation in the north block, likely due to the greater incidence angle of the incoming solar radiation. Late in the season, the north block had lower ΨSTEM (more stress) in 2016 and 2017, and the south block had lower ΨSTEM in 2018. Our results show that monitoring ETa and vine water status can inform irrigation and water stress management in hillside vineyards. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Daniele ZACCARIA (1), Lynn WUNDERLICH (2), Giulia MARINO (1), Kristen SHAPIRO (1), Sloane RICE (1), Kenneth SHACKEL (3), Richard SNYDER (1)

(1) Department of Land, Air and Water Resources, UC-Davis, One Shields Avenue, Davis, CA. 95616 USA.
(2) UCCE, 311 Fair Lane, Placerville, CA. 95667 USA.
(3) Department of Plant Sciences, UC-Davis, One Shields Avenue, Davis, CA. 95616, USA.

Contact the author

Keywords

Energy balance, actual water use, slope, crop coefficient, stem water potential

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed.

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.

The effect of wine cork closures on volatile sulfur compounds during accelerated post-bottle ageing in Shiraz wines

Reduced off-flavour is an organoleptic defect due to an excess of volatile sulfur compounds (VSC) in wine and often happening in Shiraz wines. This off-flavour is a direct consequence of the lack of oxygen flow during winemaking and bottle storage. Therefore, wine closure could have a direct impact on the formation of VSC due to the oxygen transfer rate that can modulate their levels. Even if dimethylsulfide (DMS) contributes to reduced off-flavor, it is also a fruity note enhancer in wine and its evolution during wine ageing is not well understood.