GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Effect of topography on vine evapotranspiration and water status in hillside vineyards

Effect of topography on vine evapotranspiration and water status in hillside vineyards

Abstract

Context and purpose of the study – Many winegrape regions have hillside vineyards, where vine water use is affected by vine age, density and health, canopy size, row orientation, irrigation practices, and by block slope and aspect. Topography affects the amount of solar radiation the vines receive, which is a major “driving force” of evapotranspiration (ET). Nearly all crop ET studies have been conducted on level ground, where the contributions of weather and crop factors to ET are well known. Information on winegrape ET on hillside terrains is scarce but much needed, as growers seek more resource‐efficient production practices and vine water stress monitoring techniques to manage grapes quality, and as future water supplies become increasingly variable, limited and costly. Our UC team measured the seasonal dynamics of actual ET (ETa) and vine water status in two similar vineyard blocks with north and south aspects during three consecutive seasons, with the aim to inform irrigation management decisions.

Material and methods ‐ The vineyard blocks are located in El Dorado County, California, and both are Cabernet sauvignon on 3309 rootstock, planted in 2000 with VSP trellis on approximately 24% (north‐ facing) and 25% (south‐facing) slopes, where the grower managed the irrigation. We determined ETa in the 2016 to 2018 seasons using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment to measure sensible heat flux (H). Reference ET (ETo) data was taken from the nearest weather station to calculate actual crop coefficients (Ka). We also periodically measured midday stem water potential (ΨSTEM). 

Results ‐ The north and south blocks had similar seasonal ETa, but the water use dynamic varied with the slope aspect. Until early May, ETa was slightly higher in the south (Ka between 0.5 and 0.9) than the north block (Ka between 0.4 and 0.7). From mid‐May to June and mid‐July to August, the north block had higher ETa (Ka ~ 0.65 versus 0.55 in the south slope). A progressive decrease in water use was observed from late June onwards in both blocks, with Ka of ~ 0.4 and 0.3 in August and September, respectively. Early and late in the season, we measured lower net radiation in the north block, likely due to the greater incidence angle of the incoming solar radiation. Late in the season, the north block had lower ΨSTEM (more stress) in 2016 and 2017, and the south block had lower ΨSTEM in 2018. Our results show that monitoring ETa and vine water status can inform irrigation and water stress management in hillside vineyards. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Daniele ZACCARIA (1), Lynn WUNDERLICH (2), Giulia MARINO (1), Kristen SHAPIRO (1), Sloane RICE (1), Kenneth SHACKEL (3), Richard SNYDER (1)

(1) Department of Land, Air and Water Resources, UC-Davis, One Shields Avenue, Davis, CA. 95616 USA.
(2) UCCE, 311 Fair Lane, Placerville, CA. 95667 USA.
(3) Department of Plant Sciences, UC-Davis, One Shields Avenue, Davis, CA. 95616, USA.

Contact the author

Keywords

Energy balance, actual water use, slope, crop coefficient, stem water potential

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Spur-pruning cordon for ‘Barbera’ vines in Piedmont

The traditional pruning system in Piedmont (North-West Italy) is the Guyot system; it requires trained personnel, difficult to find, and it does not permit the mechanization of winter pruning, thus it is very expensive. An alternative technique that could allow the reduction of the vineyard management costs could be the spur-pruning which is simpler to perform and fully mechanized.

Consumer acceptance of sweet wines produced by stopping fermentation with octanoic and decanoic acids

The use of medium chain fatty acids for arresting the fermentation and producing sweet wines was investigated at industrial level. Doses of 10 mg/l of octanoic or decanoic acid and a combination of 5+5 mg/l octanoic and decanoic acid were used to produce sweet wines of tamaioasa romanească variety in volumes of 3000 l.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Water recharge before budbreak and/or deficit irrigation during summer: agronomic effects on cv. Tempranillo in the D.O. Ribera del Duero

The availability of water in the soil and the water status of the vineyard are proving to be determining factors for crop management in the current context of climatic variation

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia/Germany. Part 2: regional zoning of vineyards based on local climatic classifications

En raison des vanations locales d’exposition et de déclivité, l’évaluation climatique des vignobles et des régions viticoles est très important pour la culture des raisins.