terclim by ICS banner
IVES 9 IVES Conference Series 9 FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Abstract

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites.

In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines. The study involved two experiments: a 12 h short-term storage under fresh (15 °C) and sunny outdoor (peak of 43 °C) conditions, and a medium-term storage under five different temperatures (5, 7, 12, 17, 19 °C) and durations (12, 24, 54, 84, 96 h), according to a Central Composite Design then evaluated using response-surface methodology (RSM). Berry skin break force mechanical property and juice physiochemical parameters were analyzed, as well as juice free terpene compounds using GC-MS.

In the short-term trial, after 4 and 8 h of storage the cooled sample showed a higher concentration of linalool, but at the end of the storage (12 h, when external temperature dropped to 25-20 °C after sunset), an opposite situation was found, possibly indicating a higher terpene solubilization in their thermotolerance defense role.

The medium-storage experiment indicated that the sum of the 13 detected terpenes in grape juice significantly decreased progressively after 75 h of storage, particularly in samples stored at the highest temperature tested (19 °C). However, the RSM model indicates that storage times shorter than 50 h contributed to higher terpenes, as well as the increase in storage temperature. The berry skin break force was not affected significantly by the treatments.

In conclusion, grape cold storage may offer several advantages in winemaking, but further studies are needed on this variety for assessing the best storage temperature and length conditions, as well as for the comparison between free and glycosidically-bound terpenes in juice and in the resulting wine. Acknowledgments. We thank Marco Rossetto and DENSO Thermal Systems (Poirino, Italy) for their support to this study.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Simone Giacosa¹, Stefania Savoi¹, Annachiara Lenti¹, Susana Río Segade¹, Maria Alessandra Paissoni¹, Andrea Bellincontro², Fabio Mencarelli³, Luca Rolle¹

1. University of Torino, Department of Agricultural, Forest and Food Sciences. Corso Enotria 2/C, 12051 Alba (CN), Italy
2. University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems. Via San Camillo de Lellis snc, Viterbo, Italy
3. University of Pisa, Department of Agriculture, Food and Environment. Via del Borghetto 80, Pisa, Italy

Contact the author*

Keywords

grape cold storage, aroma, terpenes, Muscat varieties

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.