terclim by ICS banner
IVES 9 IVES Conference Series 9 FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Abstract

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites.

In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines. The study involved two experiments: a 12 h short-term storage under fresh (15 °C) and sunny outdoor (peak of 43 °C) conditions, and a medium-term storage under five different temperatures (5, 7, 12, 17, 19 °C) and durations (12, 24, 54, 84, 96 h), according to a Central Composite Design then evaluated using response-surface methodology (RSM). Berry skin break force mechanical property and juice physiochemical parameters were analyzed, as well as juice free terpene compounds using GC-MS.

In the short-term trial, after 4 and 8 h of storage the cooled sample showed a higher concentration of linalool, but at the end of the storage (12 h, when external temperature dropped to 25-20 °C after sunset), an opposite situation was found, possibly indicating a higher terpene solubilization in their thermotolerance defense role.

The medium-storage experiment indicated that the sum of the 13 detected terpenes in grape juice significantly decreased progressively after 75 h of storage, particularly in samples stored at the highest temperature tested (19 °C). However, the RSM model indicates that storage times shorter than 50 h contributed to higher terpenes, as well as the increase in storage temperature. The berry skin break force was not affected significantly by the treatments.

In conclusion, grape cold storage may offer several advantages in winemaking, but further studies are needed on this variety for assessing the best storage temperature and length conditions, as well as for the comparison between free and glycosidically-bound terpenes in juice and in the resulting wine. Acknowledgments. We thank Marco Rossetto and DENSO Thermal Systems (Poirino, Italy) for their support to this study.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Simone Giacosa¹, Stefania Savoi¹, Annachiara Lenti¹, Susana Río Segade¹, Maria Alessandra Paissoni¹, Andrea Bellincontro², Fabio Mencarelli³, Luca Rolle¹

1. University of Torino, Department of Agricultural, Forest and Food Sciences. Corso Enotria 2/C, 12051 Alba (CN), Italy
2. University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems. Via San Camillo de Lellis snc, Viterbo, Italy
3. University of Pisa, Department of Agriculture, Food and Environment. Via del Borghetto 80, Pisa, Italy

Contact the author*

Keywords

grape cold storage, aroma, terpenes, Muscat varieties

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.