terclim by ICS banner
IVES 9 IVES Conference Series 9 FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Abstract

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites.

In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines. The study involved two experiments: a 12 h short-term storage under fresh (15 °C) and sunny outdoor (peak of 43 °C) conditions, and a medium-term storage under five different temperatures (5, 7, 12, 17, 19 °C) and durations (12, 24, 54, 84, 96 h), according to a Central Composite Design then evaluated using response-surface methodology (RSM). Berry skin break force mechanical property and juice physiochemical parameters were analyzed, as well as juice free terpene compounds using GC-MS.

In the short-term trial, after 4 and 8 h of storage the cooled sample showed a higher concentration of linalool, but at the end of the storage (12 h, when external temperature dropped to 25-20 °C after sunset), an opposite situation was found, possibly indicating a higher terpene solubilization in their thermotolerance defense role.

The medium-storage experiment indicated that the sum of the 13 detected terpenes in grape juice significantly decreased progressively after 75 h of storage, particularly in samples stored at the highest temperature tested (19 °C). However, the RSM model indicates that storage times shorter than 50 h contributed to higher terpenes, as well as the increase in storage temperature. The berry skin break force was not affected significantly by the treatments.

In conclusion, grape cold storage may offer several advantages in winemaking, but further studies are needed on this variety for assessing the best storage temperature and length conditions, as well as for the comparison between free and glycosidically-bound terpenes in juice and in the resulting wine. Acknowledgments. We thank Marco Rossetto and DENSO Thermal Systems (Poirino, Italy) for their support to this study.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Simone Giacosa¹, Stefania Savoi¹, Annachiara Lenti¹, Susana Río Segade¹, Maria Alessandra Paissoni¹, Andrea Bellincontro², Fabio Mencarelli³, Luca Rolle¹

1. University of Torino, Department of Agricultural, Forest and Food Sciences. Corso Enotria 2/C, 12051 Alba (CN), Italy
2. University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems. Via San Camillo de Lellis snc, Viterbo, Italy
3. University of Pisa, Department of Agriculture, Food and Environment. Via del Borghetto 80, Pisa, Italy

Contact the author*

Keywords

grape cold storage, aroma, terpenes, Muscat varieties

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.