terclim by ICS banner
IVES 9 IVES Conference Series 9 FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Abstract

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites.

In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines. The study involved two experiments: a 12 h short-term storage under fresh (15 °C) and sunny outdoor (peak of 43 °C) conditions, and a medium-term storage under five different temperatures (5, 7, 12, 17, 19 °C) and durations (12, 24, 54, 84, 96 h), according to a Central Composite Design then evaluated using response-surface methodology (RSM). Berry skin break force mechanical property and juice physiochemical parameters were analyzed, as well as juice free terpene compounds using GC-MS.

In the short-term trial, after 4 and 8 h of storage the cooled sample showed a higher concentration of linalool, but at the end of the storage (12 h, when external temperature dropped to 25-20 °C after sunset), an opposite situation was found, possibly indicating a higher terpene solubilization in their thermotolerance defense role.

The medium-storage experiment indicated that the sum of the 13 detected terpenes in grape juice significantly decreased progressively after 75 h of storage, particularly in samples stored at the highest temperature tested (19 °C). However, the RSM model indicates that storage times shorter than 50 h contributed to higher terpenes, as well as the increase in storage temperature. The berry skin break force was not affected significantly by the treatments.

In conclusion, grape cold storage may offer several advantages in winemaking, but further studies are needed on this variety for assessing the best storage temperature and length conditions, as well as for the comparison between free and glycosidically-bound terpenes in juice and in the resulting wine. Acknowledgments. We thank Marco Rossetto and DENSO Thermal Systems (Poirino, Italy) for their support to this study.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Simone Giacosa¹, Stefania Savoi¹, Annachiara Lenti¹, Susana Río Segade¹, Maria Alessandra Paissoni¹, Andrea Bellincontro², Fabio Mencarelli³, Luca Rolle¹

1. University of Torino, Department of Agricultural, Forest and Food Sciences. Corso Enotria 2/C, 12051 Alba (CN), Italy
2. University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems. Via San Camillo de Lellis snc, Viterbo, Italy
3. University of Pisa, Department of Agriculture, Food and Environment. Via del Borghetto 80, Pisa, Italy

Contact the author*

Keywords

grape cold storage, aroma, terpenes, Muscat varieties

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.