terclim by ICS banner
IVES 9 IVES Conference Series 9 FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Abstract

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites.

In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines. The study involved two experiments: a 12 h short-term storage under fresh (15 °C) and sunny outdoor (peak of 43 °C) conditions, and a medium-term storage under five different temperatures (5, 7, 12, 17, 19 °C) and durations (12, 24, 54, 84, 96 h), according to a Central Composite Design then evaluated using response-surface methodology (RSM). Berry skin break force mechanical property and juice physiochemical parameters were analyzed, as well as juice free terpene compounds using GC-MS.

In the short-term trial, after 4 and 8 h of storage the cooled sample showed a higher concentration of linalool, but at the end of the storage (12 h, when external temperature dropped to 25-20 °C after sunset), an opposite situation was found, possibly indicating a higher terpene solubilization in their thermotolerance defense role.

The medium-storage experiment indicated that the sum of the 13 detected terpenes in grape juice significantly decreased progressively after 75 h of storage, particularly in samples stored at the highest temperature tested (19 °C). However, the RSM model indicates that storage times shorter than 50 h contributed to higher terpenes, as well as the increase in storage temperature. The berry skin break force was not affected significantly by the treatments.

In conclusion, grape cold storage may offer several advantages in winemaking, but further studies are needed on this variety for assessing the best storage temperature and length conditions, as well as for the comparison between free and glycosidically-bound terpenes in juice and in the resulting wine. Acknowledgments. We thank Marco Rossetto and DENSO Thermal Systems (Poirino, Italy) for their support to this study.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Simone Giacosa¹, Stefania Savoi¹, Annachiara Lenti¹, Susana Río Segade¹, Maria Alessandra Paissoni¹, Andrea Bellincontro², Fabio Mencarelli³, Luca Rolle¹

1. University of Torino, Department of Agricultural, Forest and Food Sciences. Corso Enotria 2/C, 12051 Alba (CN), Italy
2. University of Tuscia, Department for Innovation in Biological, Agro-food and Forest systems. Via San Camillo de Lellis snc, Viterbo, Italy
3. University of Pisa, Department of Agriculture, Food and Environment. Via del Borghetto 80, Pisa, Italy

Contact the author*

Keywords

grape cold storage, aroma, terpenes, Muscat varieties

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).