terclim by ICS banner
IVES 9 IVES Conference Series 9 PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Abstract

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103. (ii) Tannins were higher in SO4 under LSHW and in PL1103 under HSCW (2.5dSm-1 and control water conditions). (iii) Higher carotenoids were found at HSCW for both rootstocks. At harvest: (i) total phenolics content decreased dramatically from veraison to harvest stage under high salinity in both rootstocks. Phenolic content decreased by 34% in SO4 and 32% in PL1103. Under LS (0.7dSm-1) total phenolics content decreased by 29% in both rootstocks. (ii) Tannins in SO4 were higher under LSCW (0.7dSm-1 and control water conditions) while in PL1103 were higher under HSHW (2.5dSm-1 and high water conditions). (iii) Carotenoids highly accumulated under HSHW in both rootstocks. In young wine samples: (i) total phenolics content was higher in wines made from berries under HSCW in SO4 while in PL1103 was higher under LSCW treatment. (ii) Tannin content was higher in the wine made from berries under HSHW from SO4 and with berries from PL1103 grafts under LSCW. (iii) For carotenoids the highest content was found in wines made with SO4 under LSCW and with PL1103under HSCW. In conclusion, our results show a clear mediating effect of the rootstock on Syrah berry metabolism and wine quality. This data should be considered when planning the use of reclaimed water in irrigation strategies or when growing plants in saline soils. Moreover, graft tolerance and mediating effects on berry metabolism might not be consistent, requiring a compromise between yield and quality.

 

1. Han X, Wang Y, Lu HC, Yang HY, Li HQ, Gao XT, Pei XX, He F, Duan CQ, Wang J. The combined influence of rootstock and vintage climate on the grape and wine flavonoids of Vitis vinifera L. cv. Cabernet Sauvignon in eastern China. Front Plant Sci. 2022 Aug 16;13:978497. doi: 10.3389/fpls.2022.978497. PMID: 36051296; PMCID: PMC9424884.
2. Nikolaou, K.-E.;Chatzistathis, T.; Theocharis, S.;Argiriou, A.; Koundouras, S.;Zioziou, E. Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own–Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change.Sustainability 2021, 13, 2477. https://doi.org/10.3390/su13052477
3. Pou, A., Balda, P., Cifre, J., Ochogavia, J. M., Ayestaran, B., Guadalupe, Z., Llompart, M., Bota, J., & Martínez, L. . (2023). Influence of non-irrigation and seasonality on wine colour, phenolic composition and sensory quality of a grapevine (Vitis vinifera Callet) in a Mediterranean climate. OENO One, 57(1), 217–233. https://doi.org/10.20870/oeno-one.2023.57.1.7199
4. Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H. Berry phenolics of grapevine under challenging environments. Int J Mol Sci. 2013 Sep 11;14(9):18711-39. doi: 10.3390/ijms140918711. PMID: 24030720; PMCID: PMC3794804.
5. Van Leeuwen, C., & Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11(1), 150-167. doi:10.1017/jwe.2015.21

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tania Acuña¹ Kidanemaryam Reta² Yaniv Lupo²; Noga Sikron¹; Shimon Rachmilevitch³; Naftali Lazarovitch³; Aaron Fait¹

1. Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dry-lands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel
2. Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel
3. Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel.

Contact the author*

Keywords

phenolics, rootstocks, combined stress, wineberry quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.