terclim by ICS banner
IVES 9 IVES Conference Series 9 PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Abstract

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103. (ii) Tannins were higher in SO4 under LSHW and in PL1103 under HSCW (2.5dSm-1 and control water conditions). (iii) Higher carotenoids were found at HSCW for both rootstocks. At harvest: (i) total phenolics content decreased dramatically from veraison to harvest stage under high salinity in both rootstocks. Phenolic content decreased by 34% in SO4 and 32% in PL1103. Under LS (0.7dSm-1) total phenolics content decreased by 29% in both rootstocks. (ii) Tannins in SO4 were higher under LSCW (0.7dSm-1 and control water conditions) while in PL1103 were higher under HSHW (2.5dSm-1 and high water conditions). (iii) Carotenoids highly accumulated under HSHW in both rootstocks. In young wine samples: (i) total phenolics content was higher in wines made from berries under HSCW in SO4 while in PL1103 was higher under LSCW treatment. (ii) Tannin content was higher in the wine made from berries under HSHW from SO4 and with berries from PL1103 grafts under LSCW. (iii) For carotenoids the highest content was found in wines made with SO4 under LSCW and with PL1103under HSCW. In conclusion, our results show a clear mediating effect of the rootstock on Syrah berry metabolism and wine quality. This data should be considered when planning the use of reclaimed water in irrigation strategies or when growing plants in saline soils. Moreover, graft tolerance and mediating effects on berry metabolism might not be consistent, requiring a compromise between yield and quality.

 

1. Han X, Wang Y, Lu HC, Yang HY, Li HQ, Gao XT, Pei XX, He F, Duan CQ, Wang J. The combined influence of rootstock and vintage climate on the grape and wine flavonoids of Vitis vinifera L. cv. Cabernet Sauvignon in eastern China. Front Plant Sci. 2022 Aug 16;13:978497. doi: 10.3389/fpls.2022.978497. PMID: 36051296; PMCID: PMC9424884.
2. Nikolaou, K.-E.;Chatzistathis, T.; Theocharis, S.;Argiriou, A.; Koundouras, S.;Zioziou, E. Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own–Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change.Sustainability 2021, 13, 2477. https://doi.org/10.3390/su13052477
3. Pou, A., Balda, P., Cifre, J., Ochogavia, J. M., Ayestaran, B., Guadalupe, Z., Llompart, M., Bota, J., & Martínez, L. . (2023). Influence of non-irrigation and seasonality on wine colour, phenolic composition and sensory quality of a grapevine (Vitis vinifera Callet) in a Mediterranean climate. OENO One, 57(1), 217–233. https://doi.org/10.20870/oeno-one.2023.57.1.7199
4. Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H. Berry phenolics of grapevine under challenging environments. Int J Mol Sci. 2013 Sep 11;14(9):18711-39. doi: 10.3390/ijms140918711. PMID: 24030720; PMCID: PMC3794804.
5. Van Leeuwen, C., & Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11(1), 150-167. doi:10.1017/jwe.2015.21

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tania Acuña¹ Kidanemaryam Reta² Yaniv Lupo²; Noga Sikron¹; Shimon Rachmilevitch³; Naftali Lazarovitch³; Aaron Fait¹

1. Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dry-lands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel
2. Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel
3. Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel.

Contact the author*

Keywords

phenolics, rootstocks, combined stress, wineberry quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.