terclim by ICS banner
IVES 9 IVES Conference Series 9 AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Abstract

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients. The study aims to assess the impact of progressive inoculation of Sc yeast during white wine fermentation at different stages: 24 h, 48 h, 72 h, 100 h, and 200 h after the initial inoculation of Hv yeast. The latter time point corresponds to the halfway of the fermentation process. The concentration of some yeast-derived aroma compounds was evaluated in wines by GC-MS/MS (2-phenylethyl alcohol, ß-phenylethyl acetate, isoamyl acetate and ethyl hexanoate) as indicators of the metabolic response of yeasts during fermentation. The 200 h protocol took an average 13 extra days to complete alcoholic fermentation compared to the pure Sc. The difference decreased as the moment of sequential inoculation neared, with a difference of ~4 days for the 24 h protocol. Regarding volatile compounds, the production of isolamyl acetate and ethyl hexanoate were higher in Sc wines respect to any Hv wines (up to 2.5-fold), for which it was found no significant differences between them. However, every Hv protocol was richer in ß-phenylethyl acetate. Interestingly, the 24 hour protocol produced the highest concentration (~11-fold than Sc) while the 200 h protocol showed the lowest (~8-fold), demonstrating a downward trend with respect to the time of Sc inoculation. Conversely, 2-phenylethanol concentration was higher in the 200 h protocol and it showed a positive correlation with reduced inoculation time. Results confirm the ability of Hv to change the aroma features of wines, increasing the rose-like scents that characterise ß-phenylethyl acetate. By reducing the delay in Sc inoculation, the performance of Hv became better aligned with industrial standards while also maintaining an increased production of ß-phenylethyl acetate.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adelaide Gallo1,2*, Mauro Paolini¹, Nicola Cappello¹, Francisco Carrau³, Rémi Schneider4 Roberto Larcher¹, Tomas Roman¹

1. Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
2. C3A – Università degli Studi di Trento, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
3. Seccion Enología, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
4. Oenobrands SAS Parc Agropolis II-Bât 5 2196 Bd de la Lironde-CS 34603, CEDEX 05, 34397 Montpellier, France

Contact the author*

Keywords

Hanseniaspora vineae, non-Saccharomyces, sequential inoculation, wine aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.