terclim by ICS banner
IVES 9 IVES Conference Series 9 AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Abstract

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients. The study aims to assess the impact of progressive inoculation of Sc yeast during white wine fermentation at different stages: 24 h, 48 h, 72 h, 100 h, and 200 h after the initial inoculation of Hv yeast. The latter time point corresponds to the halfway of the fermentation process. The concentration of some yeast-derived aroma compounds was evaluated in wines by GC-MS/MS (2-phenylethyl alcohol, ß-phenylethyl acetate, isoamyl acetate and ethyl hexanoate) as indicators of the metabolic response of yeasts during fermentation. The 200 h protocol took an average 13 extra days to complete alcoholic fermentation compared to the pure Sc. The difference decreased as the moment of sequential inoculation neared, with a difference of ~4 days for the 24 h protocol. Regarding volatile compounds, the production of isolamyl acetate and ethyl hexanoate were higher in Sc wines respect to any Hv wines (up to 2.5-fold), for which it was found no significant differences between them. However, every Hv protocol was richer in ß-phenylethyl acetate. Interestingly, the 24 hour protocol produced the highest concentration (~11-fold than Sc) while the 200 h protocol showed the lowest (~8-fold), demonstrating a downward trend with respect to the time of Sc inoculation. Conversely, 2-phenylethanol concentration was higher in the 200 h protocol and it showed a positive correlation with reduced inoculation time. Results confirm the ability of Hv to change the aroma features of wines, increasing the rose-like scents that characterise ß-phenylethyl acetate. By reducing the delay in Sc inoculation, the performance of Hv became better aligned with industrial standards while also maintaining an increased production of ß-phenylethyl acetate.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adelaide Gallo1,2*, Mauro Paolini¹, Nicola Cappello¹, Francisco Carrau³, Rémi Schneider4 Roberto Larcher¹, Tomas Roman¹

1. Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
2. C3A – Università degli Studi di Trento, via Edmund Mach 1, 38010 San Michele all’ Adige, Italy
3. Seccion Enología, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
4. Oenobrands SAS Parc Agropolis II-Bât 5 2196 Bd de la Lironde-CS 34603, CEDEX 05, 34397 Montpellier, France

Contact the author*

Keywords

Hanseniaspora vineae, non-Saccharomyces, sequential inoculation, wine aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.