GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

Abstract

Context and purpose of the study ‐ When considering the application of a systemic approach to assess the intrinsic complexity of agricultural production, the following question immediately arises: how is this synthesis made? In this sense, characterizing the joint effects of environmental factors and viticultural practices on vine functioning represents a key challenge for the correct management of Terroir. In order to provide a response to this challenge, this work assesses the relative importance of the main factors comprised into the Terroir concept: climate (or “Year” effect), “Soil” and the “Source‐sink” relation, on the vegetative development, yield, berry composition and plant sanitary status.

Material and methods ‐ The study was carried out between 2011 and 2014 on six viticultural regions in the south of Uruguay, involving nine vineyards. The cultivar studied was Tannat, which was vertically trellised and north‐south oriented in all vineyards. The year effect refers to climate, which was characterized using solar irradiation and three bioclimatic indices calculated according to the Multicriteria Climatic Classification System. The soil was characterized by digging pits and determining physicochemical properties, in order to determine three textural categories and to define soil depth and water availability. The source‐sink relationship factor referred to the ratio between leaf surface and yield, and included four categories that simulated different vine balances. This factor has been assimilated to a management that winegrowers may potentially achieve through a set of technical operations, such as pruning, shoot thinning, leaf and lateral removal and cluster thinning.
Statistical analyses included a Mixed Model with random effects to determine the relative importance of each factor on the total variability within the dataset.

Results ‐ Our results showed that vegetative growth depends mainly on the “soil” factor followed by the “Year”. Total yield per vine was explained by the “Source‐sink” relationship and the “Year*Source‐sink” interaction, both linked to the rainfall amount occurred during the maturation period. Berry weight was explained by “Year”. Rot incidence was more dependent on the “Year*Source‐sink” interaction, and then on the “Year*Soil” interaction, and on the “Soil” factor.
The synthesis of primary compounds in the berries depended mainly on the “Year” factor and the interaction of “Year*Source‐Sink”. The pH value was explained by the “Year*Soil” interaction. Secondary metabolite concentrations in the berry depended mainly on the “Source‐sink” relationship and the “Year” factor.
This investigation enables the adjustment of technical itineraries for managing this given terroir according to the characteristics of its physical environment and the production target to be achieved.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Gerardo ECHEVERRÍA (1), José M. MIRÁS‐AVALOS (2)

(1) Facultad de Agronomía, UDELAR, Garzón 780, 12900 Montevideo, Uruguay
(2) Escola Politécnica Superior de Enxeñaría, USC, Benigno Ledo s/n, 27002 Lugo, España

Contact the author

Keywords

 vineyard soils, viticultural zoning, source‐sink relationships, vine balance, berry composition, mixed model

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Soil physical and chemical properties affect vine nutrition, as indicated by leaf and petiole nutrient content, in a way that may directly impact wine properties.

Mapping intra-plot topsoil diversity of Burgundy vineyards (Aloxe-Corton, France) from very high spatial resolution (VHSR) images

In this work, we present a method based on very high spatial resolution (VHSR) aerial images acquired in the visible domain and that map soil surface diversity at the hillslope

Landscapes of the wine: the four seasons of herault

Les paysages participent à l’identité des vins de l’Hérault, avec une grande richesse de diversité. Leur observation, au travers des quatre saisons, s’appuie sur deux dimensions primordiales : la genèse de leur construction par l’homme et l’esthétique. L’hiver est la saison la plus favorable au décryptage de ce vignoble étagé, du littoral méditerranéen aux premières pentes du Massif Central; il permet de lire l’histoire des stratégies viticoles des vignerons. Les autres saisons sensibilisent plus à la beauté de vignobles dans des écrins de végétation typiquement méditerranéenne. La multiplicité des pratiques culturales et des cépages contribue à cet attrait. L’incitation au parcours, en toute saison, est très forte grâce au réseau des routes et des chemins de vigne.

The international Internet site of the geoviticulture MCC system

The “Geoviticulture Multicriteria Climatic Classification (MCC) System” was developed to characterize the climate of the wine producing regions of the world.

Heatwaves and grapevine yield in the Douro region, crop model simulations

Heatwaves or extreme heat events can be particularly harmful to agriculture. Grapevines grown in the Douro winemaking region are particularly exposed to this threat, due to the specificities of the already warm and dry climatic conditions. Furthermore, climate change simulations point to an increase in the frequency of occurrence of these extreme heat events, therefore posing a major challenge to winegrowers in the Mediterranean type climates. The current study focuses on the application of the STICS crop model to assess the potential impacts of heatwaves in grapevine yields over the Douro valley winemaking region. For this purpose, STICS was applied to grapevines using high-resolution weather, soil and terrain datasets over the Douro. To assess the impact of heatwaves, the weather dataset (1989-2005) was artificially modified, generating periods with anomalously high temperatures (+5 ºC), at certain onset dates and with specific durations (from 5 to 9 days). The model was run with this modified weather dataset and results were compared to the original unmodified runs. The results show that heatwaves can have a very strong impact on grapevine yields, strongly depending on the onset dates and duration of the heatwaves. The highest negative impacts may result in a decrease in the yield by up to -35% in some regions. Despite some uncertainties inherent to the current modelling assessment, the present study highlights the negative impacts of heatwaves on viticultural yields in the Douro region, which is critical information for stakeholders within the winemaking sector for planning suitable adaptation measures.