GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

Abstract

Context and purpose of the study ‐ When considering the application of a systemic approach to assess the intrinsic complexity of agricultural production, the following question immediately arises: how is this synthesis made? In this sense, characterizing the joint effects of environmental factors and viticultural practices on vine functioning represents a key challenge for the correct management of Terroir. In order to provide a response to this challenge, this work assesses the relative importance of the main factors comprised into the Terroir concept: climate (or “Year” effect), “Soil” and the “Source‐sink” relation, on the vegetative development, yield, berry composition and plant sanitary status.

Material and methods ‐ The study was carried out between 2011 and 2014 on six viticultural regions in the south of Uruguay, involving nine vineyards. The cultivar studied was Tannat, which was vertically trellised and north‐south oriented in all vineyards. The year effect refers to climate, which was characterized using solar irradiation and three bioclimatic indices calculated according to the Multicriteria Climatic Classification System. The soil was characterized by digging pits and determining physicochemical properties, in order to determine three textural categories and to define soil depth and water availability. The source‐sink relationship factor referred to the ratio between leaf surface and yield, and included four categories that simulated different vine balances. This factor has been assimilated to a management that winegrowers may potentially achieve through a set of technical operations, such as pruning, shoot thinning, leaf and lateral removal and cluster thinning.
Statistical analyses included a Mixed Model with random effects to determine the relative importance of each factor on the total variability within the dataset.

Results ‐ Our results showed that vegetative growth depends mainly on the “soil” factor followed by the “Year”. Total yield per vine was explained by the “Source‐sink” relationship and the “Year*Source‐sink” interaction, both linked to the rainfall amount occurred during the maturation period. Berry weight was explained by “Year”. Rot incidence was more dependent on the “Year*Source‐sink” interaction, and then on the “Year*Soil” interaction, and on the “Soil” factor.
The synthesis of primary compounds in the berries depended mainly on the “Year” factor and the interaction of “Year*Source‐Sink”. The pH value was explained by the “Year*Soil” interaction. Secondary metabolite concentrations in the berry depended mainly on the “Source‐sink” relationship and the “Year” factor.
This investigation enables the adjustment of technical itineraries for managing this given terroir according to the characteristics of its physical environment and the production target to be achieved.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Gerardo ECHEVERRÍA (1), José M. MIRÁS‐AVALOS (2)

(1) Facultad de Agronomía, UDELAR, Garzón 780, 12900 Montevideo, Uruguay
(2) Escola Politécnica Superior de Enxeñaría, USC, Benigno Ledo s/n, 27002 Lugo, España

Contact the author

Keywords

 vineyard soils, viticultural zoning, source‐sink relationships, vine balance, berry composition, mixed model

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,

The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

As environmental issues come more to the fore, vineyards residues are being looked at as solutions rather than problems. Aiming to develop a sustainable methodology for musts acidity correction in the process of winemaking, much needed in warm regions, the present study was performed according to Circular Economy values.

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.