GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

Abstract

Context and purpose of the study ‐ When considering the application of a systemic approach to assess the intrinsic complexity of agricultural production, the following question immediately arises: how is this synthesis made? In this sense, characterizing the joint effects of environmental factors and viticultural practices on vine functioning represents a key challenge for the correct management of Terroir. In order to provide a response to this challenge, this work assesses the relative importance of the main factors comprised into the Terroir concept: climate (or “Year” effect), “Soil” and the “Source‐sink” relation, on the vegetative development, yield, berry composition and plant sanitary status.

Material and methods ‐ The study was carried out between 2011 and 2014 on six viticultural regions in the south of Uruguay, involving nine vineyards. The cultivar studied was Tannat, which was vertically trellised and north‐south oriented in all vineyards. The year effect refers to climate, which was characterized using solar irradiation and three bioclimatic indices calculated according to the Multicriteria Climatic Classification System. The soil was characterized by digging pits and determining physicochemical properties, in order to determine three textural categories and to define soil depth and water availability. The source‐sink relationship factor referred to the ratio between leaf surface and yield, and included four categories that simulated different vine balances. This factor has been assimilated to a management that winegrowers may potentially achieve through a set of technical operations, such as pruning, shoot thinning, leaf and lateral removal and cluster thinning.
Statistical analyses included a Mixed Model with random effects to determine the relative importance of each factor on the total variability within the dataset.

Results ‐ Our results showed that vegetative growth depends mainly on the “soil” factor followed by the “Year”. Total yield per vine was explained by the “Source‐sink” relationship and the “Year*Source‐sink” interaction, both linked to the rainfall amount occurred during the maturation period. Berry weight was explained by “Year”. Rot incidence was more dependent on the “Year*Source‐sink” interaction, and then on the “Year*Soil” interaction, and on the “Soil” factor.
The synthesis of primary compounds in the berries depended mainly on the “Year” factor and the interaction of “Year*Source‐Sink”. The pH value was explained by the “Year*Soil” interaction. Secondary metabolite concentrations in the berry depended mainly on the “Source‐sink” relationship and the “Year” factor.
This investigation enables the adjustment of technical itineraries for managing this given terroir according to the characteristics of its physical environment and the production target to be achieved.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Gerardo ECHEVERRÍA (1), José M. MIRÁS‐AVALOS (2)

(1) Facultad de Agronomía, UDELAR, Garzón 780, 12900 Montevideo, Uruguay
(2) Escola Politécnica Superior de Enxeñaría, USC, Benigno Ledo s/n, 27002 Lugo, España

Contact the author

Keywords

 vineyard soils, viticultural zoning, source‐sink relationships, vine balance, berry composition, mixed model

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Red wine extract and resveratrol from grapevines could counteract AMD by inhibiting angiogenesis promoted by VEGF pathway in human retinal cells

Age-related macular degeneration (AMD) that is the main cause of visual impairment and blindness in Europe which is characterized by damages in the central part of the retina, the macula. This degenerative disease of the retina is mainly due to the molecular mechanism involving the production and secretion of vascular endothelial growth factor (VEF). Despite therapeutic advances thanks

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

Understanding and managing wine production from different terroirs

A « terroir » is a cultivated ecosystem in which the vine interacts with the soil and the climate. Main climatic parameters include temperature, rainfall and reference evapotranspiration

Un “GIS” agronomico per l’area a DOC dei Colli Euganei

L’area a “Denominazione di Origine Controllata Colli Euganei”, riconosciuta con Dpr 13 agosto 1969, è situata a sud-ovest della Provincia di Padova (fig. 1) ed è costituita da un sis­tema collinare di nuclei vulcanici evolutosi morfologicamente.