GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

Abstract

Context and purpose of the study ‐ When considering the application of a systemic approach to assess the intrinsic complexity of agricultural production, the following question immediately arises: how is this synthesis made? In this sense, characterizing the joint effects of environmental factors and viticultural practices on vine functioning represents a key challenge for the correct management of Terroir. In order to provide a response to this challenge, this work assesses the relative importance of the main factors comprised into the Terroir concept: climate (or “Year” effect), “Soil” and the “Source‐sink” relation, on the vegetative development, yield, berry composition and plant sanitary status.

Material and methods ‐ The study was carried out between 2011 and 2014 on six viticultural regions in the south of Uruguay, involving nine vineyards. The cultivar studied was Tannat, which was vertically trellised and north‐south oriented in all vineyards. The year effect refers to climate, which was characterized using solar irradiation and three bioclimatic indices calculated according to the Multicriteria Climatic Classification System. The soil was characterized by digging pits and determining physicochemical properties, in order to determine three textural categories and to define soil depth and water availability. The source‐sink relationship factor referred to the ratio between leaf surface and yield, and included four categories that simulated different vine balances. This factor has been assimilated to a management that winegrowers may potentially achieve through a set of technical operations, such as pruning, shoot thinning, leaf and lateral removal and cluster thinning.
Statistical analyses included a Mixed Model with random effects to determine the relative importance of each factor on the total variability within the dataset.

Results ‐ Our results showed that vegetative growth depends mainly on the “soil” factor followed by the “Year”. Total yield per vine was explained by the “Source‐sink” relationship and the “Year*Source‐sink” interaction, both linked to the rainfall amount occurred during the maturation period. Berry weight was explained by “Year”. Rot incidence was more dependent on the “Year*Source‐sink” interaction, and then on the “Year*Soil” interaction, and on the “Soil” factor.
The synthesis of primary compounds in the berries depended mainly on the “Year” factor and the interaction of “Year*Source‐Sink”. The pH value was explained by the “Year*Soil” interaction. Secondary metabolite concentrations in the berry depended mainly on the “Source‐sink” relationship and the “Year” factor.
This investigation enables the adjustment of technical itineraries for managing this given terroir according to the characteristics of its physical environment and the production target to be achieved.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Gerardo ECHEVERRÍA (1), José M. MIRÁS‐AVALOS (2)

(1) Facultad de Agronomía, UDELAR, Garzón 780, 12900 Montevideo, Uruguay
(2) Escola Politécnica Superior de Enxeñaría, USC, Benigno Ledo s/n, 27002 Lugo, España

Contact the author

Keywords

 vineyard soils, viticultural zoning, source‐sink relationships, vine balance, berry composition, mixed model

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.

Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Context and purpose of the study – The dormant and growing season temperatures in California USA have been increasing with more clear sky days. A consequence increasing temperatures and clear sky days is water deficit conditions. Viticulturists must determine appropriate balances of canopy management and irrigation budgeting to produce suitable yields without compromising berry chemistry. In response, a study designed to test the interactive effects of leaf removal timing and applied water amounts on Cabernet Sauvignon/110R in Napa Valley, CA.