terclim by ICS banner
IVES 9 IVES Conference Series 9 ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

Abstract

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification. Indeed some yeast or bacteria of interest in oenological environment are less representative or absent from manufacturer’s reference spectra database such as some species of Pichia or Starmerella genus for yeast and Acetobacter species for bacteria. Moreover, many study demonstrated that yeast and bacteria isolated from wine related environment have some particular genetic and phenotypic characteristics and commonly belong to separated subgroups within the species. These wine strains specificity make essential to create an oenological dedicated MALDI-TOF/MS spectra database with wine related environment isolated yeast and bacteria strains to obtain successful identification by MALDI-TOF/MS. The oenological mass spectra database contains today more than 200 yeast and bacteria species, corresponding to 40 different oenological yeast species and 28 distinct species of acetic and lactic acid bacteria, mainly provide by the Biological Resources Centre CRBO (ISVV). The database has been implemented and successfully used in several studies related to yeast and bacteria species diversity analysis as well as the impact on the winemaking process (pre-fermentery stages without SO₂, use of chitosan).

This oenological mass spectra database is extensible and constantly implemented to meet the needs or future challenges of the wine industry. Finally, this innovative method of MALDI-TOF/MS, completed with oenological mass spectra database, allows quick and cheap implantation validation of grape juice bioprotection preparation composed of oenological yeast species.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Amélie Vallet-Courbin¹, Marine Lucas¹, Patrick Lucas², Isabelle Masneuf-Pomarede2,3, Julie Maupeu¹

1. Microflora-ADERA, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France.
2. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR1366, ISVV, F-33140 Villenave d’Ornon, France.
3. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France.

Contact the author*

Keywords

Yeast, bacteria, MALDI-TOF/MS, identification, database

Tags

IVES Conference Series | OENO Macrowine | oeno macrowine 2023

Citation

Related articles…

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.