terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Abstract

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level. Random Amplified Polymorphic DNA (RAPD) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. All yeast isolates were scrutinized for their sensitivity to killer toxin, production of metabolites such as acetic acid and H₂S, enzymatic activity of β-glucosidase and resistance to different concentrations of the antimicrobial agents; SO₂. Qualitative data were statistically treated by homogeneity of variances, one sample Kolmogorov-Smirnov and off between-subjects effects tests. According to our results, among the 190 isolates, S. cerevisiae was the most dominant species (83,5%) while some less common non-Saccharomyces species such as Trigonopsis californica, Priceomyces carsonii, Zygo saccharomyces bailii, Brettanomyces bruxellensis and Pichia manshurica were identified in minor abundancies. Moreover, based on phenotypic typing, the majority of isolates were neutral to killer toxin test and exhibited low acetic acid production. Additionally, statistically significant differences were observed between the different levels of H₂S production in terms of sample origin and yeast species. Finally, Hierarchical Cluster Analysis revealed the presence of four yeast groups based on phenotypic fingerprinting. This study proposed a fast preselection of wine autochthonous yeast with oenological potential using a simple phenotypic-based methodology.

Acknowledgements: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call ”
Greece – Israel Call for Proposals for Joint R&D Projects 2019″(project code: T10ΔIΣ-00060).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aikaterini Tzamourani¹, Dimitra Houhoula², Ioannis Paraskevopoulos¹, Maria Dimopoulou¹

1. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece
2. Department of Food Science and Technology, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece

Contact the author*

Keywords

indigenous yeast, Greek terroir, phenotyping

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”