terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Abstract

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level. Random Amplified Polymorphic DNA (RAPD) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. All yeast isolates were scrutinized for their sensitivity to killer toxin, production of metabolites such as acetic acid and H₂S, enzymatic activity of β-glucosidase and resistance to different concentrations of the antimicrobial agents; SO₂. Qualitative data were statistically treated by homogeneity of variances, one sample Kolmogorov-Smirnov and off between-subjects effects tests. According to our results, among the 190 isolates, S. cerevisiae was the most dominant species (83,5%) while some less common non-Saccharomyces species such as Trigonopsis californica, Priceomyces carsonii, Zygo saccharomyces bailii, Brettanomyces bruxellensis and Pichia manshurica were identified in minor abundancies. Moreover, based on phenotypic typing, the majority of isolates were neutral to killer toxin test and exhibited low acetic acid production. Additionally, statistically significant differences were observed between the different levels of H₂S production in terms of sample origin and yeast species. Finally, Hierarchical Cluster Analysis revealed the presence of four yeast groups based on phenotypic fingerprinting. This study proposed a fast preselection of wine autochthonous yeast with oenological potential using a simple phenotypic-based methodology.

Acknowledgements: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call ”
Greece – Israel Call for Proposals for Joint R&D Projects 2019″(project code: T10ΔIΣ-00060).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aikaterini Tzamourani¹, Dimitra Houhoula², Ioannis Paraskevopoulos¹, Maria Dimopoulou¹

1. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece
2. Department of Food Science and Technology, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece

Contact the author*

Keywords

indigenous yeast, Greek terroir, phenotyping

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.