terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Abstract

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level. Random Amplified Polymorphic DNA (RAPD) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. All yeast isolates were scrutinized for their sensitivity to killer toxin, production of metabolites such as acetic acid and H₂S, enzymatic activity of β-glucosidase and resistance to different concentrations of the antimicrobial agents; SO₂. Qualitative data were statistically treated by homogeneity of variances, one sample Kolmogorov-Smirnov and off between-subjects effects tests. According to our results, among the 190 isolates, S. cerevisiae was the most dominant species (83,5%) while some less common non-Saccharomyces species such as Trigonopsis californica, Priceomyces carsonii, Zygo saccharomyces bailii, Brettanomyces bruxellensis and Pichia manshurica were identified in minor abundancies. Moreover, based on phenotypic typing, the majority of isolates were neutral to killer toxin test and exhibited low acetic acid production. Additionally, statistically significant differences were observed between the different levels of H₂S production in terms of sample origin and yeast species. Finally, Hierarchical Cluster Analysis revealed the presence of four yeast groups based on phenotypic fingerprinting. This study proposed a fast preselection of wine autochthonous yeast with oenological potential using a simple phenotypic-based methodology.

Acknowledgements: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call ”
Greece – Israel Call for Proposals for Joint R&D Projects 2019″(project code: T10ΔIΣ-00060).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aikaterini Tzamourani¹, Dimitra Houhoula², Ioannis Paraskevopoulos¹, Maria Dimopoulou¹

1. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece
2. Department of Food Science and Technology, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece

Contact the author*

Keywords

indigenous yeast, Greek terroir, phenotyping

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

CONSENSUS AND SENSORY DOMINANCE ARE DEPENDENT ON QUALITY CONCEPT DEFINITIONS

The definition of the term “quality” in sensory evaluation of food products does not seem to be consensual. Descriptive or liking methods are generally used to differentiate between wines (Lawless et al., 1997). Nevertheless, quality evaluation of a product such as wine can also relate to emotional aspects. As exposed by Costell (2002), product quality is defined as an integrated impression, like acceptability, pleasure, or emotional experiences during tasting. According to the ‘modality appropriateness’ hypothesis which predicts that wine tasters weigh the most suitable sensory inputs for a specific assess- ment (Freides, 1974; Welch & Warren, 1980), the nature of the quality definitions may modulate sensory influences.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).