terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Abstract

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level. Random Amplified Polymorphic DNA (RAPD) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. All yeast isolates were scrutinized for their sensitivity to killer toxin, production of metabolites such as acetic acid and H₂S, enzymatic activity of β-glucosidase and resistance to different concentrations of the antimicrobial agents; SO₂. Qualitative data were statistically treated by homogeneity of variances, one sample Kolmogorov-Smirnov and off between-subjects effects tests. According to our results, among the 190 isolates, S. cerevisiae was the most dominant species (83,5%) while some less common non-Saccharomyces species such as Trigonopsis californica, Priceomyces carsonii, Zygo saccharomyces bailii, Brettanomyces bruxellensis and Pichia manshurica were identified in minor abundancies. Moreover, based on phenotypic typing, the majority of isolates were neutral to killer toxin test and exhibited low acetic acid production. Additionally, statistically significant differences were observed between the different levels of H₂S production in terms of sample origin and yeast species. Finally, Hierarchical Cluster Analysis revealed the presence of four yeast groups based on phenotypic fingerprinting. This study proposed a fast preselection of wine autochthonous yeast with oenological potential using a simple phenotypic-based methodology.

Acknowledgements: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call ”
Greece – Israel Call for Proposals for Joint R&D Projects 2019″(project code: T10ΔIΣ-00060).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aikaterini Tzamourani¹, Dimitra Houhoula², Ioannis Paraskevopoulos¹, Maria Dimopoulou¹

1. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece
2. Department of Food Science and Technology, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece

Contact the author*

Keywords

indigenous yeast, Greek terroir, phenotyping

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.