terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Abstract

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels. Furthermore, specific strains are recurrently isolated in wines of certain wineries, thus showing the ability of the species to be resident in the cellar for long periods (Cibrario et al., 2019). Bioadhesion phenomena and biofilm formation are protective mechanisms that could explain the persistence of B. bruxellensis in the winery and recurrent wine contaminations. A subset of 17 B. bruxellensis strains, representative of the species genetic diversity and showing contrasting bioadhesion phenotypes, were selected to study the impact of pH and ethanol concentration on electronegativity (Zeta potential), hydrophobic character (MATS) and bioadhesion on stainless steel by confocal microscopy. The experimental design consisted in multi-strains and multi-species bioadhesions in order to observe potential interactions. Our results show that pH and ethanol concentrations do not impact the phenotypes but that the strains and genetic groups are the main factors explaining the variance suggesting the role of genetic mechanisms on bioadhesion properties. Regarding multispecies bioadhesion, a decrease in the bioadhesion of B. bruxellensis is observed in association with lactic acid and acetic acid bacteria. Multi-strains bioadhesion of B. bruxellensis show that the most bioadhesive strain is present in higher proportions during the first stages of the bioadhesive process comparing with other strains. This study provides new insights into the impact of environmental factors on B. bruxellensis lifestyles as bioadhesion in response to stressful environments, with major consequences on surface colonization in food industry and wine spoilage.

 

1. Chatonnet, P., Dubourdie, D., Boidron, J. -n., Pons, M., 1992. The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture 60, 165–178. https://doi.org/10.1002/jsfa.2740600205
2. Cibrario, A., Avramova, M., Dimopoulou, M., Magani, M., Miot-Sertier, C., Mas, A., Portillo, M.C., Ballestra, P., Albertin, W., Masneuf-Pomarede, I., Dols-Lafargue, M., 2019. Brettanomyces bruxellensis wine isolates show high geographical dispersal and long persistence in cellars. PLOS ONE 14, e0222749. https://doi.org/10.1371/journal.pone.0222749
3. Connell, L., Stender, H., Edwards, C.G., 2002. Rapid Detection and Identification of Brettanomyces from Winery Air Samples Based on Peptide Nucleic Acid Analysis. Am J Enol Vitic. 53, 322–324.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paul Le Montagner1,2,3, Cécile Miot-Sertier¹, Marguerite Dols-Lafargue¹, Warren Albertin¹, Vincent Renouf³, Virginie Moine², Isabelle Masneuf Pomarède1,4

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d’Ornon, France 
2. Biolaffort, Floirac, France
3. Laboratoire Excell, Floirac, France
4. Bordeaux Sciences Agro, Gradignan, France

Contact the author*

Keywords

Brettanomyces bruxellensis, Wine, Spoilage, Bioadhesion

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.