terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Abstract

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels. Furthermore, specific strains are recurrently isolated in wines of certain wineries, thus showing the ability of the species to be resident in the cellar for long periods (Cibrario et al., 2019). Bioadhesion phenomena and biofilm formation are protective mechanisms that could explain the persistence of B. bruxellensis in the winery and recurrent wine contaminations. A subset of 17 B. bruxellensis strains, representative of the species genetic diversity and showing contrasting bioadhesion phenotypes, were selected to study the impact of pH and ethanol concentration on electronegativity (Zeta potential), hydrophobic character (MATS) and bioadhesion on stainless steel by confocal microscopy. The experimental design consisted in multi-strains and multi-species bioadhesions in order to observe potential interactions. Our results show that pH and ethanol concentrations do not impact the phenotypes but that the strains and genetic groups are the main factors explaining the variance suggesting the role of genetic mechanisms on bioadhesion properties. Regarding multispecies bioadhesion, a decrease in the bioadhesion of B. bruxellensis is observed in association with lactic acid and acetic acid bacteria. Multi-strains bioadhesion of B. bruxellensis show that the most bioadhesive strain is present in higher proportions during the first stages of the bioadhesive process comparing with other strains. This study provides new insights into the impact of environmental factors on B. bruxellensis lifestyles as bioadhesion in response to stressful environments, with major consequences on surface colonization in food industry and wine spoilage.

 

1. Chatonnet, P., Dubourdie, D., Boidron, J. -n., Pons, M., 1992. The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture 60, 165–178. https://doi.org/10.1002/jsfa.2740600205
2. Cibrario, A., Avramova, M., Dimopoulou, M., Magani, M., Miot-Sertier, C., Mas, A., Portillo, M.C., Ballestra, P., Albertin, W., Masneuf-Pomarede, I., Dols-Lafargue, M., 2019. Brettanomyces bruxellensis wine isolates show high geographical dispersal and long persistence in cellars. PLOS ONE 14, e0222749. https://doi.org/10.1371/journal.pone.0222749
3. Connell, L., Stender, H., Edwards, C.G., 2002. Rapid Detection and Identification of Brettanomyces from Winery Air Samples Based on Peptide Nucleic Acid Analysis. Am J Enol Vitic. 53, 322–324.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paul Le Montagner1,2,3, Cécile Miot-Sertier¹, Marguerite Dols-Lafargue¹, Warren Albertin¹, Vincent Renouf³, Virginie Moine², Isabelle Masneuf Pomarède1,4

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d’Ornon, France 
2. Biolaffort, Floirac, France
3. Laboratoire Excell, Floirac, France
4. Bordeaux Sciences Agro, Gradignan, France

Contact the author*

Keywords

Brettanomyces bruxellensis, Wine, Spoilage, Bioadhesion

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.