terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Abstract

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels. Furthermore, specific strains are recurrently isolated in wines of certain wineries, thus showing the ability of the species to be resident in the cellar for long periods (Cibrario et al., 2019). Bioadhesion phenomena and biofilm formation are protective mechanisms that could explain the persistence of B. bruxellensis in the winery and recurrent wine contaminations. A subset of 17 B. bruxellensis strains, representative of the species genetic diversity and showing contrasting bioadhesion phenotypes, were selected to study the impact of pH and ethanol concentration on electronegativity (Zeta potential), hydrophobic character (MATS) and bioadhesion on stainless steel by confocal microscopy. The experimental design consisted in multi-strains and multi-species bioadhesions in order to observe potential interactions. Our results show that pH and ethanol concentrations do not impact the phenotypes but that the strains and genetic groups are the main factors explaining the variance suggesting the role of genetic mechanisms on bioadhesion properties. Regarding multispecies bioadhesion, a decrease in the bioadhesion of B. bruxellensis is observed in association with lactic acid and acetic acid bacteria. Multi-strains bioadhesion of B. bruxellensis show that the most bioadhesive strain is present in higher proportions during the first stages of the bioadhesive process comparing with other strains. This study provides new insights into the impact of environmental factors on B. bruxellensis lifestyles as bioadhesion in response to stressful environments, with major consequences on surface colonization in food industry and wine spoilage.

 

1. Chatonnet, P., Dubourdie, D., Boidron, J. -n., Pons, M., 1992. The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture 60, 165–178. https://doi.org/10.1002/jsfa.2740600205
2. Cibrario, A., Avramova, M., Dimopoulou, M., Magani, M., Miot-Sertier, C., Mas, A., Portillo, M.C., Ballestra, P., Albertin, W., Masneuf-Pomarede, I., Dols-Lafargue, M., 2019. Brettanomyces bruxellensis wine isolates show high geographical dispersal and long persistence in cellars. PLOS ONE 14, e0222749. https://doi.org/10.1371/journal.pone.0222749
3. Connell, L., Stender, H., Edwards, C.G., 2002. Rapid Detection and Identification of Brettanomyces from Winery Air Samples Based on Peptide Nucleic Acid Analysis. Am J Enol Vitic. 53, 322–324.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paul Le Montagner1,2,3, Cécile Miot-Sertier¹, Marguerite Dols-Lafargue¹, Warren Albertin¹, Vincent Renouf³, Virginie Moine², Isabelle Masneuf Pomarède1,4

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d’Ornon, France 
2. Biolaffort, Floirac, France
3. Laboratoire Excell, Floirac, France
4. Bordeaux Sciences Agro, Gradignan, France

Contact the author*

Keywords

Brettanomyces bruxellensis, Wine, Spoilage, Bioadhesion

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.