terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Abstract

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels. Furthermore, specific strains are recurrently isolated in wines of certain wineries, thus showing the ability of the species to be resident in the cellar for long periods (Cibrario et al., 2019). Bioadhesion phenomena and biofilm formation are protective mechanisms that could explain the persistence of B. bruxellensis in the winery and recurrent wine contaminations. A subset of 17 B. bruxellensis strains, representative of the species genetic diversity and showing contrasting bioadhesion phenotypes, were selected to study the impact of pH and ethanol concentration on electronegativity (Zeta potential), hydrophobic character (MATS) and bioadhesion on stainless steel by confocal microscopy. The experimental design consisted in multi-strains and multi-species bioadhesions in order to observe potential interactions. Our results show that pH and ethanol concentrations do not impact the phenotypes but that the strains and genetic groups are the main factors explaining the variance suggesting the role of genetic mechanisms on bioadhesion properties. Regarding multispecies bioadhesion, a decrease in the bioadhesion of B. bruxellensis is observed in association with lactic acid and acetic acid bacteria. Multi-strains bioadhesion of B. bruxellensis show that the most bioadhesive strain is present in higher proportions during the first stages of the bioadhesive process comparing with other strains. This study provides new insights into the impact of environmental factors on B. bruxellensis lifestyles as bioadhesion in response to stressful environments, with major consequences on surface colonization in food industry and wine spoilage.

 

1. Chatonnet, P., Dubourdie, D., Boidron, J. -n., Pons, M., 1992. The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture 60, 165–178. https://doi.org/10.1002/jsfa.2740600205
2. Cibrario, A., Avramova, M., Dimopoulou, M., Magani, M., Miot-Sertier, C., Mas, A., Portillo, M.C., Ballestra, P., Albertin, W., Masneuf-Pomarede, I., Dols-Lafargue, M., 2019. Brettanomyces bruxellensis wine isolates show high geographical dispersal and long persistence in cellars. PLOS ONE 14, e0222749. https://doi.org/10.1371/journal.pone.0222749
3. Connell, L., Stender, H., Edwards, C.G., 2002. Rapid Detection and Identification of Brettanomyces from Winery Air Samples Based on Peptide Nucleic Acid Analysis. Am J Enol Vitic. 53, 322–324.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paul Le Montagner1,2,3, Cécile Miot-Sertier¹, Marguerite Dols-Lafargue¹, Warren Albertin¹, Vincent Renouf³, Virginie Moine², Isabelle Masneuf Pomarède1,4

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d’Ornon, France 
2. Biolaffort, Floirac, France
3. Laboratoire Excell, Floirac, France
4. Bordeaux Sciences Agro, Gradignan, France

Contact the author*

Keywords

Brettanomyces bruxellensis, Wine, Spoilage, Bioadhesion

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.