terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

IMPACT OF ABIOTIC AND BIOTIC FACTORS ON BIOADHESION PROPERTIES OF BRETTANOMYCES BRUXELLENSIS

Abstract

Brettanomyces bruxellensis is an ubiquitous yeast associated with different fermentation media such as beer and kombucha, where its presence is beneficial to bring an aromatic typicity. However, it is a main spoilage yeast in wines, in which it produces volatile phenols responsible for organoleptic deviations causing significant economic losses (Chatonnet et al., 1992). Cellar and winery equipment’s are considered as the first source of contamination, during fermentation and wine ageing process (Connel et al., 2002). Indeed, it is possible to find B. bruxellensis in the air, on walls and floors of the cellars, on small materials, vats and barrels. Furthermore, specific strains are recurrently isolated in wines of certain wineries, thus showing the ability of the species to be resident in the cellar for long periods (Cibrario et al., 2019). Bioadhesion phenomena and biofilm formation are protective mechanisms that could explain the persistence of B. bruxellensis in the winery and recurrent wine contaminations. A subset of 17 B. bruxellensis strains, representative of the species genetic diversity and showing contrasting bioadhesion phenotypes, were selected to study the impact of pH and ethanol concentration on electronegativity (Zeta potential), hydrophobic character (MATS) and bioadhesion on stainless steel by confocal microscopy. The experimental design consisted in multi-strains and multi-species bioadhesions in order to observe potential interactions. Our results show that pH and ethanol concentrations do not impact the phenotypes but that the strains and genetic groups are the main factors explaining the variance suggesting the role of genetic mechanisms on bioadhesion properties. Regarding multispecies bioadhesion, a decrease in the bioadhesion of B. bruxellensis is observed in association with lactic acid and acetic acid bacteria. Multi-strains bioadhesion of B. bruxellensis show that the most bioadhesive strain is present in higher proportions during the first stages of the bioadhesive process comparing with other strains. This study provides new insights into the impact of environmental factors on B. bruxellensis lifestyles as bioadhesion in response to stressful environments, with major consequences on surface colonization in food industry and wine spoilage.

 

1. Chatonnet, P., Dubourdie, D., Boidron, J. -n., Pons, M., 1992. The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture 60, 165–178. https://doi.org/10.1002/jsfa.2740600205
2. Cibrario, A., Avramova, M., Dimopoulou, M., Magani, M., Miot-Sertier, C., Mas, A., Portillo, M.C., Ballestra, P., Albertin, W., Masneuf-Pomarede, I., Dols-Lafargue, M., 2019. Brettanomyces bruxellensis wine isolates show high geographical dispersal and long persistence in cellars. PLOS ONE 14, e0222749. https://doi.org/10.1371/journal.pone.0222749
3. Connell, L., Stender, H., Edwards, C.G., 2002. Rapid Detection and Identification of Brettanomyces from Winery Air Samples Based on Peptide Nucleic Acid Analysis. Am J Enol Vitic. 53, 322–324.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Paul Le Montagner1,2,3, Cécile Miot-Sertier¹, Marguerite Dols-Lafargue¹, Warren Albertin¹, Vincent Renouf³, Virginie Moine², Isabelle Masneuf Pomarède1,4

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d’Ornon, France 
2. Biolaffort, Floirac, France
3. Laboratoire Excell, Floirac, France
4. Bordeaux Sciences Agro, Gradignan, France

Contact the author*

Keywords

Brettanomyces bruxellensis, Wine, Spoilage, Bioadhesion

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.