terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Abstract

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance. Therefore, the objective of this study is to evaluate the effect of sequential time (2, 4 and 6 days) of T. delbrueckii/ S. cerevisiae on the achievement of MLF by two strains of Oenococcus oeni. AF and the following MLF were performed in a synthetic must supplemented with linoleic acid and b-sitosterol. The results showed that differences were observed in the duration of the AF as for example co-inoculated AF lasted less time, even compared to the control, while sequential AF were prolonged in time. Regarding the abundance of the species in co-inoculation S. cerevisiae dominated the fermentation process from the middle to the end as previously described in literature [2,3] . In sequential fermentations, T. delbrueckii represented a higher percentage at the end, 40-30% of the total population. In relation to the differences between sequential conditions it seems that during the fermentation with 4 days of T. delbruekii contact the population was higher than 2 and 6 days. As for the supplementation with lipids to the synthetic must we could observe that yeast viability increased, acetic acid decreased and AF and MLF performance improved. Regarding MLF T. delbrueckii improved the total time of the process comparing with S. cerevisiae as described in literature [1,4] . However, in the co-inoculated wines MLF had a longer duration. Regarding sequential wines, in the 4-day contact condition with T. delbruekii the MLF was shortened to two days, with the two O. oeni strains, so this seemed to be the best strategy combination.

Overall, these findings highlight the importance of considering both the inoculation strategy and the specific strains used to a better understanding of the complex interactions between these species in the fermentation process.

 

1. Balmaseda, A., Rozès, N., Bordons, A., & Reguant, C. (2021). Torulaspora delbrueckii promotes malolactic fermentation in high polyphenolic red wines. LWT, 148. https://doi.org/10.1016/j.lwt.2021.111777
2. Bordet, F., Joran, A., Klein, G., Roullier-Gall, C., & Alexandre, H. (2020). Yeast-yeast interactions: Mechanisms, methodologies and impact on composition. In Microorganisms (Vol. 8, Issue 4). MDPI AG. https://doi.org/10.3390/microorganisms8040600
3. Lleixà, J., Manzano, M., Mas, A., & Portillo, M. del C. (2016). Saccharomyces and non-Saccharomyces competition during microvinification under different sugar and nitrogen conditions. Frontiers in Microbiology, 7(DEC). https://doi.org/10.3389/fmicb.2016.01959
4. Martín-García, A., Balmaseda, A., Bordons, A., & Reguant, C. (2020). Effect of the inoculation strategy of non-Saccharomyces yeasts on wine malolactic fermentation. Oeno One, 54(1), 101–108. https://doi.org/10.20870/oeno-one.2020.54.1.2906
5. Ruiz-de-Villa, C., Poblet, M., Cordero-Otero, R., Bordons, A., Reguant, C., & Rozès, N. (2023). Screening of Saccharomyces cerevisiae and Torulaspora delbrueckii strains in relation to their effect on malolactic fermentation. Food Microbiology, 112. https://doi.org/10.1016/j.fm.2022.104212

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Candela Ruiz-de-Villa¹, Montse Poblet¹, Albert Bordons², Cristina Reguant², Nicolas Rozès¹

1. Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universi-tat Rovira i Virgili, c/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.
2. Grup de Biotecnologia Enològica,Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, c/ Marcel·lí Domingo s/n, 43007 Tarragona, Catalonia, Spain.

Contact the author*

Keywords

Wine microorganisms, Alcoholic fermentation, Malolactic fermentation, Inoculation strategy

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.