terclim by ICS banner
IVES 9 IVES Conference Series 9 PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Abstract

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines. One of the specie the most used for its bio-protection capacity is the genus Metschnikowia. This project aims to study the phenotypical diversity in wine fermentative conditions and the diversity of bio-protector character of Metschnikowia sp.

To study the phenotypical diversity, 16 species of Metschnikowia within 50 strains have been selected depending their localization, their origins, and the species. These strains are used to ferment grape synthetical must, and the products of carbon central metabolism are analyzed by HPLC and the production of volatile molecules by GC-MS. In parallel, these strains are put in co-culture, with an acetic bacterium (Gluconobacter oxydans), known to lead to acetic souring, in commercial grape juice to study the interaction between yeast at 106cell/mL, and bacteria at 103cell/mL. Their growth is followed at day 0, 1, 2 and 7 through drop test on selective medium.

Similar to the fermentation aspects, the volatile profiles of the different strains were quite different, which corroborated the diversity of the Metschnikowia yeasts. The results of the drop test show an effect of bio-protection from the species Metschnikowia on the growth of G. oxydans. This work can underline both the potential of Metschnikowia yeast strains for inhibiting spoilage wine microorganisms and increasing aroma compounds.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Angèle Thiriet², Pascale Fernandez-Valle¹, Cécile Grondin², Jean-Luc Legras1,2, Carole Camarasa¹, Audrey Bloem¹

1. UMR SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
2. CIRM Levures, UMR SPO, Montpellier, France

Contact the author*

Keywords

wine fermentation, bioprotection, Metschnikowia, diversity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

CHARACTERIZATION AND IDENTIFICATION OF YEAST BIOACTIVE PEPTIDES RELEASED DURING FERMENTATION AND AUTOLYSIS IN MODEL WINE

Aging wine on lees is a consolidated practice during which some yeast components (e.g., polysaccharides,
proteins, peptides) are released and solubilized in wine thus, affecting its stability and quality.
Apart from the widely studied mannoproteins, the role of other yeast components in modulating wine
characteristics is still scarce. Wine peptides have been studied for their contribution to taste, antioxidant,
and antihypertensive potentials. However, the peptides detected in wine can be influenced by the
interaction between yeasts and grape components.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.