terclim by ICS banner
IVES 9 IVES Conference Series 9 PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Abstract

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines. One of the specie the most used for its bio-protection capacity is the genus Metschnikowia. This project aims to study the phenotypical diversity in wine fermentative conditions and the diversity of bio-protector character of Metschnikowia sp.

To study the phenotypical diversity, 16 species of Metschnikowia within 50 strains have been selected depending their localization, their origins, and the species. These strains are used to ferment grape synthetical must, and the products of carbon central metabolism are analyzed by HPLC and the production of volatile molecules by GC-MS. In parallel, these strains are put in co-culture, with an acetic bacterium (Gluconobacter oxydans), known to lead to acetic souring, in commercial grape juice to study the interaction between yeast at 106cell/mL, and bacteria at 103cell/mL. Their growth is followed at day 0, 1, 2 and 7 through drop test on selective medium.

Similar to the fermentation aspects, the volatile profiles of the different strains were quite different, which corroborated the diversity of the Metschnikowia yeasts. The results of the drop test show an effect of bio-protection from the species Metschnikowia on the growth of G. oxydans. This work can underline both the potential of Metschnikowia yeast strains for inhibiting spoilage wine microorganisms and increasing aroma compounds.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Angèle Thiriet², Pascale Fernandez-Valle¹, Cécile Grondin², Jean-Luc Legras1,2, Carole Camarasa¹, Audrey Bloem¹

1. UMR SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
2. CIRM Levures, UMR SPO, Montpellier, France

Contact the author*

Keywords

wine fermentation, bioprotection, Metschnikowia, diversity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.