terclim by ICS banner
IVES 9 IVES Conference Series 9 UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

Abstract

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness. Recent developments have highlighted the interested of untargeted metabolomic analysis for oenology4,5. Using similar tools, an original approach has been developed here to discover new sweet molecules released during post-fermentation maceration. In this context, different samples were taken from eight Bordeaux wineries over three vintages. These samples, coming from a total of 240 vats, were collected at two distinct stages, giving rise to two modalities: at the end of alcoholic fermentation and just before running-off the vat, that is before and after post-fermentation maceration. The analyses were assayed using liquid chromatography–high resolution mass spectrometry (UHPLC-Q-Exactive Plus, Orbitrap analyzer). Data processing was carried out using the MzMine 2 software followed by a differential analysis and statistical study executed with the R software to obtain a list of ions showing a strong increase during maceration. The MS² spectral data, obtained by fragmentation of molecules, provided informa-tion for their identification. One of these ions was selected and considered for a targeted purification by various separative techniques (SPE, CPC and HPLC-preparative). Its structural elucidation by NMR allowed to identify this compound for the first time in wine. Furthermore, sensory analysis revealed its pronounced sweet taste. This study proposes new tools to investigate taste-active compounds in wine. More generally, the results bring new insights to understand the chemical origin of wine taste and open promising perspectives for practical applications.

 

1. Cretin, B., Waffo-Teguo, P., Dubourdieu, D., Marchal, A., 2019. Taste-guided isolation of sweet-tasting compounds from grape seeds, structural elucidation and identification in wines. Food Chemistry 272, 388–395.
2. Fayad, S., Le Scanff, M., Waffo-Teguo, P., Marchal, A., 2021. Understanding sweetness of dry wines: First evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages. Food Chemistry 352, 129293.
3. Cretin, B., 2016. Recherches sur les déterminants moléculaires contribuant à l’équilibre gustatif des vins secs 340.
4. Arapitsas, P., Ugliano, M., Marangon, M., Piombino, P., Rolle, L., Gerbi, V., Versari, A., Mattivi, F., 2020. Use of Untargeted Liquid Chromatography–Mass Spectrometry Metabolome To Discriminate Italian Monovarietal Red Wines, Produced in Their Different Terroirs. Journal of Agricultural and Food Chemistry. 68, 13353–13366.
5. Gil, M., Reynes, C., Cazals, G., Enjalbal, C., Sabatier, R., Saucier, C., 2020. Discrimination of rosé wines using shotgun metabolomics with a genetic algorithm and MS ion intensity ratios. Scientific Reports. 10, 1170.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marie Le Scanff1,2, Warren Albertin1,2, Laurence Marcourt3, Adriano Rutz3, Jean-Luc Wolfender3 and Axel Marchal1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland

Contact the author*

Keywords

Untargeted metabolomic analysis, Taste, Sweetness, Mass spectrometry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest. The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.