terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Abstract

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermen-tative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must. Daily glucose and fructose consumption was monitored and at the final point free sorting task was conducted to categorize the samples according to their organoleptic profile. The most performant strains were selected and sub-sequently subjected in a second laboratory scale fermentation. Oenological properties such as, titratable acidity, glucose/fructose consumption, total acidity, volatile acidity, pH, L-malic acid, yeast assimilable nitrogen, free and total SO₂ as well as sensory characteristics were determined. Finally, two wines with different aromatic profiles were subjected in Gas Chromatography- Olfactometry- Mass Spectrometry (GC-O MS) analysis. The molecular typing revealed the presence of 20 different S. cerevisiae strains from which 65% indicated high fermentative capacity. Hierarchical Cluster Analysis (HCA) based on sensory evaluation results clearly discriminated the produced wines and led to the selection of 4 strains. After the second pilot fermentation all selected strains resulted in dry wines with desirable technological and organoleptic characteristics. Additionally, statistically significant differences were noticed regar-ding the perception of tropical fruits and acidity while according to the results of GC-O MS analysis both samples revealed similar aromatic profiles. To the best of our knowledge, this is the first assay that ex-plores the yeast strain effect on the aromatic profile of Assyrtiko variety by means of GC-O MS analysis.

Acknowledgements: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call ” Greece – Israel Call for Proposals for Joint R&D Projects 2019″(project code: T10ΔΙΣ-00060).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Aikaterini P. Tzamourani¹, Elli Goulioti², Alexandra Evangelou¹, Yorgos Kotseridis², Panagiotis Arapitsas¹, Ioannis Paraskevopoulos¹ And Maria Dimopoulou¹

1. Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Agiou Spiridonos Str., 12243 Egaleo, Greece
2. Laboratory of Enology & Alcoholic Drinks (LEAD), Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece

Contact the author*

Keywords

Indigenous yeast, S. cerevisiae, Strain variability, Assyrtiko wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.