terclim by ICS banner
IVES 9 IVES Conference Series 9 A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

Abstract

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2]. However, a few non-fruity aroma compounds not belonging to ester family are known to contribute to the fruity aroma in red wines. For example, β-damascenone and β-ionone (C13-norisoprenoids) boost the fruity notes via synergic effects while 1,8-cineole (a monoterpenoid) is involved in the blackcurrant aroma of particular red wines [3, 4]. This study intends to explore the fruitiness of red wines produced from different grape varieties. An analytical method was developed and optimized using liquid-liquid extraction and gas chromatography coupled to mass spectrometry (GC/MS) to determine the concentrations of aroma compounds potentially involved in the fruity aroma of red wines. The aim of this method was to reduce sample preparation and analysis time, as this tool requires a single sample preparation and a single injection to quantify 43 aromatic compounds including 19 esters, 13 monoterpenes, 5 C13-norisoprenoids and 1 C6-aldehyde and 5 C6-alcohols. A total of 37 volatile compounds were detected and quantified in commercial single-va-rietal red wines from the 2018 vintage made from grape-varieties planted around the Mediterranean (Greece, Cyprus, Spain, Portugal and France). A generation of olfactory descriptors was coupled to instrumental analyses to investigate their fruity aromas. Samples were selected by experts according to their qualitative fruity aromas marked by “fresh red- and black-berry fruit” and “red- and black-berry jammy fruit” notes. Differences were observed regarding the variations in concentrations of several aroma compounds. Some variations are partially correlated to the olfactory descriptors cited by experts.

 

1. Van Leeuwen, C., Barbe, J.-C., Darriet, P., Destrac-Irvine, A., Gowdy, M., Lytra, G., Marchal, A., Marchand, S., Plantevin, M., Poitou, X., Pons, A., & Thibon, C. (2022). Aromatic maturity is a cornerstone of terroir expression in red wine: This article is published in cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3-8 July 2022, Bordeaux, France. OENO One 56(2), 335–351.https://doi.org/10.20870/oeno-one.2022.56.2.5441.
2. Lytra, G., Cameleyre, M., Tempere, S., & Barbe, J.-C. (2015). Distribution and organoleptic impact of ethyl 3-hydroxybutanoate enantiomers in wine. Journal of Agriculture and Food Chemistry, 63(48), 10484–10491. https://doi.org/10.1021/acs. jafc.5b04332.
3. Escudero, A., Campo, E., Fariña, L., Cacho, J., & Ferreira, V. (2007). Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. Journal of Agriculture and Food Chemistry, 55(1), 4501–4510. https://doi.org/10.1021/jf0636418.
4. Antalick, G., Tempère, S., Šuklje, K., Blackman, J.W., Deloire, A., de Revel, G., Schmidtke, L.M. (2015). Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine. Journal of Agriculture and Food Chemistry. 63(41), 9103–9111. https://doi.org/10.1021/acs.jafc.5b03847

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Justine Garbay1,2, Margaux Cameleyre1,2, Laurent Riquier1,2, Jean-Christophe Barbe1,2, Georgia Lytra*1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

aroma compounds, GC-MS, fruity aroma, red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.