GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Abstract

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes. The present study aimed to assess the consistency of rootstock effects on growth and fruit composition of scion varieties and identify scion x rootstock interactions.

Methods and Results‐ Vine performance and fruit composition of hot climate, drip irrigated, spur pruned Chardonnay, Cabernet Sauvignon and Shiraz grafted on 7 rootstocks was assessed over 5 seasons, 2013‐2017. Rootstocks included Ramsey, 1103 Paulsen and 140 Ruggeri and 4 promising selections from the CSIRO rootstock development program. Vines were trained as quadrilateral cordons on a 1.8 m high 2‐wire vertical trellis with a 3.0 m x 1.8 m, row x vine spacing and irrigated with 5.5 – 6.0 Ml/ha of water each season. The study was conducted with mature vines established in 2006, as a randomized block design with 5 replicates.

There were significant effects of both variety and rootstock on yield, bunch number, bunch weight, berry weight (scion only), berries per bunch, pruning weight and the Ravaz Index (yield/pruning weight). Despite identical management practices, there were large differences between scion varieties in key growth characteristics across rootstocks. Chardonnay produced a high yield (mean 25.2 kg/vine) with low pruning weight (2.3 kg/vine) and a high mean Ravaz Index value of 12.1. Shiraz had the highest yield (27.4 kg/vine) with high pruning weight (5.1 kg/vine) and a Ravaz index of 6.3. Cabernet Sauvignon had the lowest yield (15.9 kg/vine) and highest pruning weight (6.6 kg/vine) and a very low Ravaz Index value of 3.0. Effects of rootstock on growth characteristics were smaller than the effects of variety, with mean yields ranging from 19.5 to 25.9 kg/vine, pruning weights ranging from 3.24 to 6.13 kg/vine and mean Ravaz Index values ranging from 5.54 to 8.63. Each variety was harvested when mean total soluble solids reached 25.0 oBrix. There were significant effects of variety and rootstock on fruit composition including pH, titratable acidity (scion only), malate, tartrate (scion only), yeast assimilable nitrogen (YAN) and for the red varieties, total anthocyanins (scion only) and phenolic substances (scion only). 

Significant interactions between scion variety and rootstocks were found for yield, bunch number, berry weight, pruning weight and Ravaz index. The effect of rootstock on bunch weight and berries per bunch was consistent across scions. Significant scion x rootstock interactions were also found for pH and YAN. For each variety, significant effects of rootstock on fruit composition were linked to growth characteristics. However, these relationships, based on correlation analyses, varied for each scion.

Conclusions

The study has shown that growth characteristics and fruit composition of the major varieties was not consistent across 7 rootstock genotypes, as significant scion x rootstock interactions were determined. Hence, different rootstocks may be required for each variety to optimise scion performance and fruit composition. The study has also shown that the new CSIRO rootstock selections, covering a range of vigour classifications, may be useful alternatives to those currently in use by industry.

Significance and impact of the study‐ The study has shown that the performance of scion varieties and to a lesser degree fruit composition, is dependent on rootstock choice. The inherent vigour of the scion variety must be considered in rootstock selection. Furthermore, individual scion/rootstock combinations may require specific irrigation, pruning or canopy management to achieve vine balance and optimise fruit and wine composition.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Peter CLINGELEFFER (1), Norma MORALES (1), Hilary DAVIS (2) and Harley SMITH (1)

(1) CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond SA, 5064, Australia.
(2) CSIRO Agriculture and Food, PO Box 447, Irymple Vic, 3498, Australia.

Contact the author

Keywords

Grapevine, Scion, Variety, Rootstock, Growth, Composition, Interactions

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Biological de-sugaring of grape musts to adjust the alcoholic strength of wine

Climate change is having an ever-increasing impact on the physico-chemical composition of grapes, with ever-lower acidity and higher sugar levels.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs.

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.