terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

Abstract

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]). However, no studies have been carried out to correlate the permeability of agglomerated closures with the scalping effect. In this study, we studied the evolution of the scalping effect of 7 VSC on 4 micro-agglomerated closures in model and Shiraz wines.

In practice, each closure was fully immerged in 20 mL of wine containing a precise concentration of 7 VSC (13.3 µmol/L) and maintained at room temperature under stirring (300 rpm) for 7 days. Finally, the residual concentration of VSC in the wines was monitored after 1 h, 6 h, 3 days and 7 days by HS-SPME-GC-MS/MS. All experiments were performed in triplicate and a control experiment without closure allowed us to evaluate the losses of VSC due to chemical mechanisms in both matrices.

In general, the concentrations of VSC decreased in all experiments from 1 h to 7 days, regardless of the wine matrix, indicating a possible flavour scalping. In fact, the residual concentrations of VSC after 7 days of monitoring were significantly lower in wines containing a closure (2.1±0.5 µmol/L) than in the control experiment (6.3 µmol/L). VSC were rapidly degraded after 6 h of contact of both wine matrices with closures, but no significant effect of the type of closure was observed. Consequently, it seems that the permeability of the agglomerated closure could not affect the scalping of VSC.

From a quantitative point of view, a simple material balance allowed us to characterize the fate of VSC during simulated ageing conditions:

 

Synthetic wine: 27±3 % of sorption on the whole closure/ 60% of chemical mechanisms/ 13±3% of residual VSC.
Shiraz wine: 22±1 % of sorption on total closure/ 61% of chemical mechanisms/ 17±1 % of residual VSC.
Finally, if we only consider the size of the closure mirror, the VSC scalping in the bottles is negligible and corresponds to 4% maximum of the initial concentration.
1. Ugliano, M., et al., Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre-and postbottling controlled oxygen exposure. Journal of agricultural and food chemistry, 2012. 60(35): p. 8561-8570.
2. Silva, M.A., et al., Scalping of light volatile sulfur compounds by wine closures. Journal of agricultural and food chemistry, 2012. 60(44): p. 10952-10956.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rémi DE LA BURGADE¹, Valérie NOLLEAU¹, Teddy GODET¹, Nicolas GALY², Dimitri TIXADOR², Christophe LOISEL², Nicolas SOMMERER¹ & Aurélie ROLAND¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2. DIAM Bouchage, 3 Rue des Salines, 66400 Céret, France

Contact the author*

Keywords

volatile sulphur compounds, wine closure, scalping, sorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].