terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

Abstract

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]). However, no studies have been carried out to correlate the permeability of agglomerated closures with the scalping effect. In this study, we studied the evolution of the scalping effect of 7 VSC on 4 micro-agglomerated closures in model and Shiraz wines.

In practice, each closure was fully immerged in 20 mL of wine containing a precise concentration of 7 VSC (13.3 µmol/L) and maintained at room temperature under stirring (300 rpm) for 7 days. Finally, the residual concentration of VSC in the wines was monitored after 1 h, 6 h, 3 days and 7 days by HS-SPME-GC-MS/MS. All experiments were performed in triplicate and a control experiment without closure allowed us to evaluate the losses of VSC due to chemical mechanisms in both matrices.

In general, the concentrations of VSC decreased in all experiments from 1 h to 7 days, regardless of the wine matrix, indicating a possible flavour scalping. In fact, the residual concentrations of VSC after 7 days of monitoring were significantly lower in wines containing a closure (2.1±0.5 µmol/L) than in the control experiment (6.3 µmol/L). VSC were rapidly degraded after 6 h of contact of both wine matrices with closures, but no significant effect of the type of closure was observed. Consequently, it seems that the permeability of the agglomerated closure could not affect the scalping of VSC.

From a quantitative point of view, a simple material balance allowed us to characterize the fate of VSC during simulated ageing conditions:

 

Synthetic wine: 27±3 % of sorption on the whole closure/ 60% of chemical mechanisms/ 13±3% of residual VSC.
Shiraz wine: 22±1 % of sorption on total closure/ 61% of chemical mechanisms/ 17±1 % of residual VSC.
Finally, if we only consider the size of the closure mirror, the VSC scalping in the bottles is negligible and corresponds to 4% maximum of the initial concentration.
1. Ugliano, M., et al., Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre-and postbottling controlled oxygen exposure. Journal of agricultural and food chemistry, 2012. 60(35): p. 8561-8570.
2. Silva, M.A., et al., Scalping of light volatile sulfur compounds by wine closures. Journal of agricultural and food chemistry, 2012. 60(44): p. 10952-10956.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rémi DE LA BURGADE¹, Valérie NOLLEAU¹, Teddy GODET¹, Nicolas GALY², Dimitri TIXADOR², Christophe LOISEL², Nicolas SOMMERER¹ & Aurélie ROLAND¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2. DIAM Bouchage, 3 Rue des Salines, 66400 Céret, France

Contact the author*

Keywords

volatile sulphur compounds, wine closure, scalping, sorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.