terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

Abstract

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]). However, no studies have been carried out to correlate the permeability of agglomerated closures with the scalping effect. In this study, we studied the evolution of the scalping effect of 7 VSC on 4 micro-agglomerated closures in model and Shiraz wines.

In practice, each closure was fully immerged in 20 mL of wine containing a precise concentration of 7 VSC (13.3 µmol/L) and maintained at room temperature under stirring (300 rpm) for 7 days. Finally, the residual concentration of VSC in the wines was monitored after 1 h, 6 h, 3 days and 7 days by HS-SPME-GC-MS/MS. All experiments were performed in triplicate and a control experiment without closure allowed us to evaluate the losses of VSC due to chemical mechanisms in both matrices.

In general, the concentrations of VSC decreased in all experiments from 1 h to 7 days, regardless of the wine matrix, indicating a possible flavour scalping. In fact, the residual concentrations of VSC after 7 days of monitoring were significantly lower in wines containing a closure (2.1±0.5 µmol/L) than in the control experiment (6.3 µmol/L). VSC were rapidly degraded after 6 h of contact of both wine matrices with closures, but no significant effect of the type of closure was observed. Consequently, it seems that the permeability of the agglomerated closure could not affect the scalping of VSC.

From a quantitative point of view, a simple material balance allowed us to characterize the fate of VSC during simulated ageing conditions:

 

Synthetic wine: 27±3 % of sorption on the whole closure/ 60% of chemical mechanisms/ 13±3% of residual VSC.
Shiraz wine: 22±1 % of sorption on total closure/ 61% of chemical mechanisms/ 17±1 % of residual VSC.
Finally, if we only consider the size of the closure mirror, the VSC scalping in the bottles is negligible and corresponds to 4% maximum of the initial concentration.
1. Ugliano, M., et al., Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre-and postbottling controlled oxygen exposure. Journal of agricultural and food chemistry, 2012. 60(35): p. 8561-8570.
2. Silva, M.A., et al., Scalping of light volatile sulfur compounds by wine closures. Journal of agricultural and food chemistry, 2012. 60(44): p. 10952-10956.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rémi DE LA BURGADE¹, Valérie NOLLEAU¹, Teddy GODET¹, Nicolas GALY², Dimitri TIXADOR², Christophe LOISEL², Nicolas SOMMERER¹ & Aurélie ROLAND¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2. DIAM Bouchage, 3 Rue des Salines, 66400 Céret, France

Contact the author*

Keywords

volatile sulphur compounds, wine closure, scalping, sorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.