terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

Abstract

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]). However, no studies have been carried out to correlate the permeability of agglomerated closures with the scalping effect. In this study, we studied the evolution of the scalping effect of 7 VSC on 4 micro-agglomerated closures in model and Shiraz wines.

In practice, each closure was fully immerged in 20 mL of wine containing a precise concentration of 7 VSC (13.3 µmol/L) and maintained at room temperature under stirring (300 rpm) for 7 days. Finally, the residual concentration of VSC in the wines was monitored after 1 h, 6 h, 3 days and 7 days by HS-SPME-GC-MS/MS. All experiments were performed in triplicate and a control experiment without closure allowed us to evaluate the losses of VSC due to chemical mechanisms in both matrices.

In general, the concentrations of VSC decreased in all experiments from 1 h to 7 days, regardless of the wine matrix, indicating a possible flavour scalping. In fact, the residual concentrations of VSC after 7 days of monitoring were significantly lower in wines containing a closure (2.1±0.5 µmol/L) than in the control experiment (6.3 µmol/L). VSC were rapidly degraded after 6 h of contact of both wine matrices with closures, but no significant effect of the type of closure was observed. Consequently, it seems that the permeability of the agglomerated closure could not affect the scalping of VSC.

From a quantitative point of view, a simple material balance allowed us to characterize the fate of VSC during simulated ageing conditions:

 

Synthetic wine: 27±3 % of sorption on the whole closure/ 60% of chemical mechanisms/ 13±3% of residual VSC.
Shiraz wine: 22±1 % of sorption on total closure/ 61% of chemical mechanisms/ 17±1 % of residual VSC.
Finally, if we only consider the size of the closure mirror, the VSC scalping in the bottles is negligible and corresponds to 4% maximum of the initial concentration.
1. Ugliano, M., et al., Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre-and postbottling controlled oxygen exposure. Journal of agricultural and food chemistry, 2012. 60(35): p. 8561-8570.
2. Silva, M.A., et al., Scalping of light volatile sulfur compounds by wine closures. Journal of agricultural and food chemistry, 2012. 60(44): p. 10952-10956.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rémi DE LA BURGADE¹, Valérie NOLLEAU¹, Teddy GODET¹, Nicolas GALY², Dimitri TIXADOR², Christophe LOISEL², Nicolas SOMMERER¹ & Aurélie ROLAND¹

1. SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2. DIAM Bouchage, 3 Rue des Salines, 66400 Céret, France

Contact the author*

Keywords

volatile sulphur compounds, wine closure, scalping, sorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood.