terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

Abstract

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance. In order to prevent any legal consequences of aroma migration, we propose how to define the requested absence of sensory significance and how to improve cleaning in respect to aroma compounds.

Using a novel direct analysis of sealing polymers revealed that cleaning of the filler removed only 11–62% of seven studied aroma compounds which are commonly used to aromatize wines, including γ-decalactone, α-ionone or eugenol¹. High temperature of 85 °C revealed the largest cleaning effect, while chemical additives such as caustic soda or ozone exhibited only minor efficacy². Complete removal of absorbed aroma compounds from sealing was not achieved, making a later release into subsequently bottled wines still possible.

Odor detection thresholds were determined separately in water, model wine and white wine for the monitored aroma compounds. Applying the odor activity concept, we could show that migration of aroma compounds into the subsequently bottled wines were of no sensory relevance³.

Studying aroma migration in two industry scale bottling lines we could confirm the uptake of marker compounds into sealing polymers during bottling mulled or aromatized wines. Despite ineffective cleaning, aroma compounds migrating back into the subsequently bottled non-aromatized regular wines were way below their sensory thresholds. Sensory evaluation by a 2-out-of-5-test of the wine before and after bottling indeed revealed no significant difference.

In conclusion, despite migration of aroma compounds into sealing of a bottling line, cleaning and dilution effects in the subsequently filled wine prevented any aroma carry-over of sensory relevance. Thus, the analytical determination of “illegal” added aroma traces in a regular wine due to this technically unavoidable transfer, would not lead to legal prosecution. This legal evaluation could be a show case, how to apply the de-minimis concept to assess traces of pesticides or other contaminants into wine.

 

1. Gottmann, J., Vestner, J., Müller, D., Schuster, J., & Fischer, U. (2021). Uptake and Release of Aroma Compounds by an Ethylene Propylene Diene Monomer Rubber Sealing Polymer: Investigating Aroma Carryover in a Model Wine System. Journal of Agricultural and Food Chemistry, 69(38), 11382-11394.
2. Gottmann, J., Müller, D., Becker, A,-M., Vestner, J., Schuster, J., & Fischer, U. (2022), Improved sealing polymers and cleaning procedures to mitigate aroma carryover during bottling of aromatised and regular wine on the same filling line. OenoOne, 56(4), 41-54
3. Gottmann, J., Vestner, J. & Fischer, U. (2022). Sensory relevance of seven aroma compounds involved in unintended but potentially fraudulent aromatization of wine due to aroma carry over. Food Chem, 402, 1341600.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jörg Gottmann ¹, Jochen Vestner ¹

1. Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology

Contact the author*

Keywords

aroma migration, matrix dependent odor detection threshold, odor activity value, aroma-tized wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.