terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

Abstract

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance. In order to prevent any legal consequences of aroma migration, we propose how to define the requested absence of sensory significance and how to improve cleaning in respect to aroma compounds.

Using a novel direct analysis of sealing polymers revealed that cleaning of the filler removed only 11–62% of seven studied aroma compounds which are commonly used to aromatize wines, including γ-decalactone, α-ionone or eugenol¹. High temperature of 85 °C revealed the largest cleaning effect, while chemical additives such as caustic soda or ozone exhibited only minor efficacy². Complete removal of absorbed aroma compounds from sealing was not achieved, making a later release into subsequently bottled wines still possible.

Odor detection thresholds were determined separately in water, model wine and white wine for the monitored aroma compounds. Applying the odor activity concept, we could show that migration of aroma compounds into the subsequently bottled wines were of no sensory relevance³.

Studying aroma migration in two industry scale bottling lines we could confirm the uptake of marker compounds into sealing polymers during bottling mulled or aromatized wines. Despite ineffective cleaning, aroma compounds migrating back into the subsequently bottled non-aromatized regular wines were way below their sensory thresholds. Sensory evaluation by a 2-out-of-5-test of the wine before and after bottling indeed revealed no significant difference.

In conclusion, despite migration of aroma compounds into sealing of a bottling line, cleaning and dilution effects in the subsequently filled wine prevented any aroma carry-over of sensory relevance. Thus, the analytical determination of “illegal” added aroma traces in a regular wine due to this technically unavoidable transfer, would not lead to legal prosecution. This legal evaluation could be a show case, how to apply the de-minimis concept to assess traces of pesticides or other contaminants into wine.

 

1. Gottmann, J., Vestner, J., Müller, D., Schuster, J., & Fischer, U. (2021). Uptake and Release of Aroma Compounds by an Ethylene Propylene Diene Monomer Rubber Sealing Polymer: Investigating Aroma Carryover in a Model Wine System. Journal of Agricultural and Food Chemistry, 69(38), 11382-11394.
2. Gottmann, J., Müller, D., Becker, A,-M., Vestner, J., Schuster, J., & Fischer, U. (2022), Improved sealing polymers and cleaning procedures to mitigate aroma carryover during bottling of aromatised and regular wine on the same filling line. OenoOne, 56(4), 41-54
3. Gottmann, J., Vestner, J. & Fischer, U. (2022). Sensory relevance of seven aroma compounds involved in unintended but potentially fraudulent aromatization of wine due to aroma carry over. Food Chem, 402, 1341600.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jörg Gottmann ¹, Jochen Vestner ¹

1. Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology

Contact the author*

Keywords

aroma migration, matrix dependent odor detection threshold, odor activity value, aroma-tized wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4 This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.