terclim by ICS banner
IVES 9 IVES Conference Series 9 SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

Abstract

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance. In order to prevent any legal consequences of aroma migration, we propose how to define the requested absence of sensory significance and how to improve cleaning in respect to aroma compounds.

Using a novel direct analysis of sealing polymers revealed that cleaning of the filler removed only 11–62% of seven studied aroma compounds which are commonly used to aromatize wines, including γ-decalactone, α-ionone or eugenol¹. High temperature of 85 °C revealed the largest cleaning effect, while chemical additives such as caustic soda or ozone exhibited only minor efficacy². Complete removal of absorbed aroma compounds from sealing was not achieved, making a later release into subsequently bottled wines still possible.

Odor detection thresholds were determined separately in water, model wine and white wine for the monitored aroma compounds. Applying the odor activity concept, we could show that migration of aroma compounds into the subsequently bottled wines were of no sensory relevance³.

Studying aroma migration in two industry scale bottling lines we could confirm the uptake of marker compounds into sealing polymers during bottling mulled or aromatized wines. Despite ineffective cleaning, aroma compounds migrating back into the subsequently bottled non-aromatized regular wines were way below their sensory thresholds. Sensory evaluation by a 2-out-of-5-test of the wine before and after bottling indeed revealed no significant difference.

In conclusion, despite migration of aroma compounds into sealing of a bottling line, cleaning and dilution effects in the subsequently filled wine prevented any aroma carry-over of sensory relevance. Thus, the analytical determination of “illegal” added aroma traces in a regular wine due to this technically unavoidable transfer, would not lead to legal prosecution. This legal evaluation could be a show case, how to apply the de-minimis concept to assess traces of pesticides or other contaminants into wine.

 

1. Gottmann, J., Vestner, J., Müller, D., Schuster, J., & Fischer, U. (2021). Uptake and Release of Aroma Compounds by an Ethylene Propylene Diene Monomer Rubber Sealing Polymer: Investigating Aroma Carryover in a Model Wine System. Journal of Agricultural and Food Chemistry, 69(38), 11382-11394.
2. Gottmann, J., Müller, D., Becker, A,-M., Vestner, J., Schuster, J., & Fischer, U. (2022), Improved sealing polymers and cleaning procedures to mitigate aroma carryover during bottling of aromatised and regular wine on the same filling line. OenoOne, 56(4), 41-54
3. Gottmann, J., Vestner, J. & Fischer, U. (2022). Sensory relevance of seven aroma compounds involved in unintended but potentially fraudulent aromatization of wine due to aroma carry over. Food Chem, 402, 1341600.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jörg Gottmann ¹, Jochen Vestner ¹

1. Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology

Contact the author*

Keywords

aroma migration, matrix dependent odor detection threshold, odor activity value, aroma-tized wines

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.