terclim by ICS banner
IVES 9 IVES Conference Series 9 THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

Abstract

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Different types of wines in terms of region, grape variety, oak aging and price were subjected to an oxidative aging procedure, sensory analysis, gas-chromatography olfactometry (GC-O) and quantitative analysis. Sensory notes such as dried fruit, cooked vegetables or liquorice-alcohol were oxidation-related. The GCO analysis of the samples with highest oxidation notes, revealed highest levels of four odour zones, which were identified in a dual system GC-O/FID-GC-O/MS as 1,1-diethoxyethane (liquor, strawberry, sweet), 2,4,5-trimethyl-1,3-dioxolane (fruity, solvent), 3-methylbutanal (solvent, yeasty) and methional (boiled potato, cooked vegetables).

The two aldehydes were quantified by gas chromatography-mass spectrometry (GC-MS). together with isobutanal, 2-methylbutanal and phenylacetaldehyde. All them were already present in significant amounts before oxidation. However, as they were forming odourless reversible adducts with SO₂ (α-hydroxyalkylsulphonates)1 they were initially non-odour active. However, as free SO₂ disappeared during oxidation² they become odour-active in oxidized samples. Additional quantities were formed during oxidation, most likely by the reaction of wine dicarbonyls with the amino acid precursors. This additional formation was particularly relevant for 2-methylbutanal, followed by methional and isobutanal, while for phenylacetaldehyde and 3-methylbutanal, quantities formed were smaller than those originally present. These results confirm that both, pre-existent levels of Strecker aldehydes and the ability to form them during oxidation, are relevant in wine stability.

Acetals were determined by L-L microextraction followed by GC-MS. Results revealed that during oxidation there is a clear increment on the levels of acetals formed from the condensation of acetaldehyde with ethanol, 2,3-butanediol and glycerol; leading to 1,1-diethoxyethane, 2,4,5-trimethyl-1,3-dioxolane and several heterocyclic acetals, respectively. Levels formed were high enough to be odour-active. This suggests that the formation of acetals is an essential part of the sensory changes noted during wine oxidation.

 

1. L.C. de Azevedo et al., Journal of Agricultural and Food Chemistry 2007, 55 (21)
2. M. Bueno, V. Carrascón & V.Ferreira. Journal of Agricultural and Food Chemistry 2016, 64 (3)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

A. M. Aragón-Capone¹, A. de-la-Fuente-Blanco¹, M.P. Saenz-Navajas², V.Ferreira¹, M.Bueno¹
1. Laboratorio de Análisis del Aroma y Enología (LAAE), Departamento de Química Analítica, Universidad de Zaragoza, Institu-to Agroalimentario de Aragón (IA2) (UNIZAR-CITA).Associated to Instituto de Ciencias de la Vid y del Vino (ICVV)(UR-CSIC-GR), c/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
2. Instituto de Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), Departamento de Enología, Logroño, La Rioja, Spain.

Contact the author*

Keywords

Chemosensory analysis, Gas chromatography-olfactometry (GC-O), Oxidative aging, Wine’s longevity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.