terclim by ICS banner
IVES 9 IVES Conference Series 9 THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

Abstract

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Different types of wines in terms of region, grape variety, oak aging and price were subjected to an oxidative aging procedure, sensory analysis, gas-chromatography olfactometry (GC-O) and quantitative analysis. Sensory notes such as dried fruit, cooked vegetables or liquorice-alcohol were oxidation-related. The GCO analysis of the samples with highest oxidation notes, revealed highest levels of four odour zones, which were identified in a dual system GC-O/FID-GC-O/MS as 1,1-diethoxyethane (liquor, strawberry, sweet), 2,4,5-trimethyl-1,3-dioxolane (fruity, solvent), 3-methylbutanal (solvent, yeasty) and methional (boiled potato, cooked vegetables).

The two aldehydes were quantified by gas chromatography-mass spectrometry (GC-MS). together with isobutanal, 2-methylbutanal and phenylacetaldehyde. All them were already present in significant amounts before oxidation. However, as they were forming odourless reversible adducts with SO₂ (α-hydroxyalkylsulphonates)1 they were initially non-odour active. However, as free SO₂ disappeared during oxidation² they become odour-active in oxidized samples. Additional quantities were formed during oxidation, most likely by the reaction of wine dicarbonyls with the amino acid precursors. This additional formation was particularly relevant for 2-methylbutanal, followed by methional and isobutanal, while for phenylacetaldehyde and 3-methylbutanal, quantities formed were smaller than those originally present. These results confirm that both, pre-existent levels of Strecker aldehydes and the ability to form them during oxidation, are relevant in wine stability.

Acetals were determined by L-L microextraction followed by GC-MS. Results revealed that during oxidation there is a clear increment on the levels of acetals formed from the condensation of acetaldehyde with ethanol, 2,3-butanediol and glycerol; leading to 1,1-diethoxyethane, 2,4,5-trimethyl-1,3-dioxolane and several heterocyclic acetals, respectively. Levels formed were high enough to be odour-active. This suggests that the formation of acetals is an essential part of the sensory changes noted during wine oxidation.

 

1. L.C. de Azevedo et al., Journal of Agricultural and Food Chemistry 2007, 55 (21)
2. M. Bueno, V. Carrascón & V.Ferreira. Journal of Agricultural and Food Chemistry 2016, 64 (3)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

A. M. Aragón-Capone¹, A. de-la-Fuente-Blanco¹, M.P. Saenz-Navajas², V.Ferreira¹, M.Bueno¹
1. Laboratorio de Análisis del Aroma y Enología (LAAE), Departamento de Química Analítica, Universidad de Zaragoza, Institu-to Agroalimentario de Aragón (IA2) (UNIZAR-CITA).Associated to Instituto de Ciencias de la Vid y del Vino (ICVV)(UR-CSIC-GR), c/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
2. Instituto de Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), Departamento de Enología, Logroño, La Rioja, Spain.

Contact the author*

Keywords

Chemosensory analysis, Gas chromatography-olfactometry (GC-O), Oxidative aging, Wine’s longevity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.