terclim by ICS banner
IVES 9 IVES Conference Series 9 THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

Abstract

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Different types of wines in terms of region, grape variety, oak aging and price were subjected to an oxidative aging procedure, sensory analysis, gas-chromatography olfactometry (GC-O) and quantitative analysis. Sensory notes such as dried fruit, cooked vegetables or liquorice-alcohol were oxidation-related. The GCO analysis of the samples with highest oxidation notes, revealed highest levels of four odour zones, which were identified in a dual system GC-O/FID-GC-O/MS as 1,1-diethoxyethane (liquor, strawberry, sweet), 2,4,5-trimethyl-1,3-dioxolane (fruity, solvent), 3-methylbutanal (solvent, yeasty) and methional (boiled potato, cooked vegetables).

The two aldehydes were quantified by gas chromatography-mass spectrometry (GC-MS). together with isobutanal, 2-methylbutanal and phenylacetaldehyde. All them were already present in significant amounts before oxidation. However, as they were forming odourless reversible adducts with SO₂ (α-hydroxyalkylsulphonates)1 they were initially non-odour active. However, as free SO₂ disappeared during oxidation² they become odour-active in oxidized samples. Additional quantities were formed during oxidation, most likely by the reaction of wine dicarbonyls with the amino acid precursors. This additional formation was particularly relevant for 2-methylbutanal, followed by methional and isobutanal, while for phenylacetaldehyde and 3-methylbutanal, quantities formed were smaller than those originally present. These results confirm that both, pre-existent levels of Strecker aldehydes and the ability to form them during oxidation, are relevant in wine stability.

Acetals were determined by L-L microextraction followed by GC-MS. Results revealed that during oxidation there is a clear increment on the levels of acetals formed from the condensation of acetaldehyde with ethanol, 2,3-butanediol and glycerol; leading to 1,1-diethoxyethane, 2,4,5-trimethyl-1,3-dioxolane and several heterocyclic acetals, respectively. Levels formed were high enough to be odour-active. This suggests that the formation of acetals is an essential part of the sensory changes noted during wine oxidation.

 

1. L.C. de Azevedo et al., Journal of Agricultural and Food Chemistry 2007, 55 (21)
2. M. Bueno, V. Carrascón & V.Ferreira. Journal of Agricultural and Food Chemistry 2016, 64 (3)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

A. M. Aragón-Capone¹, A. de-la-Fuente-Blanco¹, M.P. Saenz-Navajas², V.Ferreira¹, M.Bueno¹
1. Laboratorio de Análisis del Aroma y Enología (LAAE), Departamento de Química Analítica, Universidad de Zaragoza, Institu-to Agroalimentario de Aragón (IA2) (UNIZAR-CITA).Associated to Instituto de Ciencias de la Vid y del Vino (ICVV)(UR-CSIC-GR), c/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
2. Instituto de Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), Departamento de Enología, Logroño, La Rioja, Spain.

Contact the author*

Keywords

Chemosensory analysis, Gas chromatography-olfactometry (GC-O), Oxidative aging, Wine’s longevity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.