terclim by ICS banner
IVES 9 IVES Conference Series 9 THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

Abstract

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Different types of wines in terms of region, grape variety, oak aging and price were subjected to an oxidative aging procedure, sensory analysis, gas-chromatography olfactometry (GC-O) and quantitative analysis. Sensory notes such as dried fruit, cooked vegetables or liquorice-alcohol were oxidation-related. The GCO analysis of the samples with highest oxidation notes, revealed highest levels of four odour zones, which were identified in a dual system GC-O/FID-GC-O/MS as 1,1-diethoxyethane (liquor, strawberry, sweet), 2,4,5-trimethyl-1,3-dioxolane (fruity, solvent), 3-methylbutanal (solvent, yeasty) and methional (boiled potato, cooked vegetables).

The two aldehydes were quantified by gas chromatography-mass spectrometry (GC-MS). together with isobutanal, 2-methylbutanal and phenylacetaldehyde. All them were already present in significant amounts before oxidation. However, as they were forming odourless reversible adducts with SO₂ (α-hydroxyalkylsulphonates)1 they were initially non-odour active. However, as free SO₂ disappeared during oxidation² they become odour-active in oxidized samples. Additional quantities were formed during oxidation, most likely by the reaction of wine dicarbonyls with the amino acid precursors. This additional formation was particularly relevant for 2-methylbutanal, followed by methional and isobutanal, while for phenylacetaldehyde and 3-methylbutanal, quantities formed were smaller than those originally present. These results confirm that both, pre-existent levels of Strecker aldehydes and the ability to form them during oxidation, are relevant in wine stability.

Acetals were determined by L-L microextraction followed by GC-MS. Results revealed that during oxidation there is a clear increment on the levels of acetals formed from the condensation of acetaldehyde with ethanol, 2,3-butanediol and glycerol; leading to 1,1-diethoxyethane, 2,4,5-trimethyl-1,3-dioxolane and several heterocyclic acetals, respectively. Levels formed were high enough to be odour-active. This suggests that the formation of acetals is an essential part of the sensory changes noted during wine oxidation.

 

1. L.C. de Azevedo et al., Journal of Agricultural and Food Chemistry 2007, 55 (21)
2. M. Bueno, V. Carrascón & V.Ferreira. Journal of Agricultural and Food Chemistry 2016, 64 (3)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

A. M. Aragón-Capone¹, A. de-la-Fuente-Blanco¹, M.P. Saenz-Navajas², V.Ferreira¹, M.Bueno¹
1. Laboratorio de Análisis del Aroma y Enología (LAAE), Departamento de Química Analítica, Universidad de Zaragoza, Institu-to Agroalimentario de Aragón (IA2) (UNIZAR-CITA).Associated to Instituto de Ciencias de la Vid y del Vino (ICVV)(UR-CSIC-GR), c/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
2. Instituto de Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), Departamento de Enología, Logroño, La Rioja, Spain.

Contact the author*

Keywords

Chemosensory analysis, Gas chromatography-olfactometry (GC-O), Oxidative aging, Wine’s longevity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.