terclim by ICS banner
IVES 9 IVES Conference Series 9 INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

Abstract

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well. To the best of our knowledge, a gap exists regarding grape composition – pressing conditions – must composition. To fulfill this gap and support the wine industry, this research aimed to clarify the impact of grape pressing based on both grape and must composition.

Chardonnay (7 samples) and Pinot blanc (2 samples) grapes were collected in vintage 2022 from different vineyards in Franciacorta area (Lombardy, Italy). These grapes were used to produce musts under an industrial scale following the pressing conditions adopted by wineries. Must samples were obtained at different extraction yields (e.g. running juice, 20, 30 [first fraction], 40, 50 [second fraction], 60 and 70 [third fraction] % must yields). The chemical parameters, turbidity units (NTU), color index (ABS 420 nm), total phenol index (TPI), polyphenol oxidase (PPO) activity and antioxidant capacity (AC) were assessed in both grape and must samples.

A decreasing trend of readily assimilable nitrogen and titratable acidity was found in must samples with higher extraction yields, while the opposite was observed for pH, NTU, color index, TPI and AC with a different extend dependent from the grape varieties and pressing conditions. Considering the first fraction must, a high variability in phenol extraction was found, from 16% to about 35%. Such a difference could be attributable to the different pressing conditions adopted as comparable levels of TPI were detected in grapes used (1.7-2.2 g/L, RDS=10%). The PPO activity seemed to be unaffected by the increased must extraction yield. Grape variety was influential on phenol content for the same must yield being higher for Pinot blanc probably due to its thinner skin in comparison to Chardonnay.

This study suggests the phenol-related indexes should be considered in addition to the chemical parameters for the accurate management of the pressing step; it also has been clarifying the relation existing between the composition of grape and must.

 

1. Gawel R., Day M., Van Sluyter S.C., Holt H., Waters E.J., Smith P.A. (2014). White wine taste and mouthfeel as affected by juice extraction and processing. J. Agric. Food Chem. 62, 10008–10014. https://doi.org/10.1021/jf503082v
2. Ferreira-Lima N.E., Burin V.M., Caliari V.,  Bordignon-Luiz M.T. (2016). Impact of pressing conditions on the phenolic com-position, radical scavenging activity and glutathione content of Brazilian Vitis vinifera white wines and evolution during bottle ageing. Food Bioprocess. Technol. 9, 944–957. https://doi.org/10.1007/s11947-016-1680-7
3. Lukic I., Horvat I., Radeka S., Damijanic K., Staver M. (2019). Effect of different levels of skin disruption and contact with oxy-gen during grape processing on phenols, volatile aromas, and sensory characteristics of white wine. J. Food Process. Preserv. 201943, e13960. https://doi.org/10.1111/jfpp.13969
4. Del Fresno J.M., Cardona M., Ossorio P., Loira I., Escott C., Morata A. (2021). White must extraction. In: White Wine Techno-logy. Academic Press. https://doi.org/10.1016/B978-0-12-823497-6.00013-2

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gvantsa Shanshiashvili¹, Marta Baviera¹, Antonio Tirelli¹, Daniela Fracassetti1,*

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy 

Contact the author*

Keywords

White grape, Must extraction, Sparkling wine, Phenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.