terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Abstract

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated. The film types varied in their chitosan and/or β-cyclodextrin composition. Film coatings were applied at veraison in vineyards in the Rogue Valley and Willamette Valley. The Rogue Valley experienced two smoke events during the season from wildfires in California. The grapes from Willamette Valley experience heavy smoke exposure using designed smoke cages. At harvest, half of the grapes were washed to remove the films. This was to determine if smoke phenols were blocked or bound to the film coatings. Further analysis of the interaction of smoke phenols with film coatings was done by observing any volatile phenol diffusion through the film using a custom-made polytetrafluoroethylene apparatus. Free and bound smoke phenols in grape juice were analyzed using GCMS and smoke glycosides using LCMS³. Results show some of the film coatings were effective in reducing the amount of smoke compounds absorbed into the grapes, primarily guaiacol, 4-methyl guaiacol, syringol and 4-methyl syringol. The cresol compounds were not greatly impacted. The collective results of this study show promise for film coatings as an effective preventative technique for grape smoke exposure. Optimization of the film coating formulation will lead to the reduction in smoke sensory characteristics in wine and ultimately diminish the loss of product.

 

1. McKay, M., Bauer, F., Panzeri, V., Mokwena, L., & Buica, A.S. (2019). Potentially smoke tainted red wines: volatile phenols and aroma attributes. South African Journal of Enology and Viticulture, 40(2).
2. Tran, T.T., Jung, J., Garcia, L., Deshields, J.B., Cerrato, D.C., Penner, M.H., Tomasino, E., Levin, A.D., & Zhao, Y.(2023). Impact of functional spray coatings on smoke volatile phenol compounds and Pinot noir grape growth. Journal of Food Science, 88, 367– 380. 
3. Liu, Z., Ezernieks, V., Reddy, P., Elkins, A., Krill, C., Murphy, K., Rochfort, S., Spangenberg, G. (2020). A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites, 10(7), 294.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

L. Garcia¹, T. Tran¹, J. Jung², J.B. DeShields³, D.C. Cerrato², M.H. Penner⁴, A.D. Levin⁵, Y. Zhao⁶ and E. Tomasino⁴,*

1. Graduate research Assistant, Food Science & Technology, OSU, Corvallis, OR,
2. Assistant Professor Senior Research Associate, Food Science & Technology, OSU, Corvallis, OR,
3. Faculty Research Assistant, Department of Horticulture, Southern Oregon Research Center, OSU, Central Point, OR,
4. Associate Professor, Food Science & Technology, OSU, Corvallis, OR,
5. Associate Professor, Department of Horticulture, Southern Oregon Research and Extension, Central Point, OR,
6. Professor, Food Science & Technology, OSU, Corvallis, OR

Contact the author*

Keywords

smoke, remediation, film, phenol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.