terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Abstract

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated. The film types varied in their chitosan and/or β-cyclodextrin composition. Film coatings were applied at veraison in vineyards in the Rogue Valley and Willamette Valley. The Rogue Valley experienced two smoke events during the season from wildfires in California. The grapes from Willamette Valley experience heavy smoke exposure using designed smoke cages. At harvest, half of the grapes were washed to remove the films. This was to determine if smoke phenols were blocked or bound to the film coatings. Further analysis of the interaction of smoke phenols with film coatings was done by observing any volatile phenol diffusion through the film using a custom-made polytetrafluoroethylene apparatus. Free and bound smoke phenols in grape juice were analyzed using GCMS and smoke glycosides using LCMS³. Results show some of the film coatings were effective in reducing the amount of smoke compounds absorbed into the grapes, primarily guaiacol, 4-methyl guaiacol, syringol and 4-methyl syringol. The cresol compounds were not greatly impacted. The collective results of this study show promise for film coatings as an effective preventative technique for grape smoke exposure. Optimization of the film coating formulation will lead to the reduction in smoke sensory characteristics in wine and ultimately diminish the loss of product.

 

1. McKay, M., Bauer, F., Panzeri, V., Mokwena, L., & Buica, A.S. (2019). Potentially smoke tainted red wines: volatile phenols and aroma attributes. South African Journal of Enology and Viticulture, 40(2).
2. Tran, T.T., Jung, J., Garcia, L., Deshields, J.B., Cerrato, D.C., Penner, M.H., Tomasino, E., Levin, A.D., & Zhao, Y.(2023). Impact of functional spray coatings on smoke volatile phenol compounds and Pinot noir grape growth. Journal of Food Science, 88, 367– 380. 
3. Liu, Z., Ezernieks, V., Reddy, P., Elkins, A., Krill, C., Murphy, K., Rochfort, S., Spangenberg, G. (2020). A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites, 10(7), 294.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

L. Garcia¹, T. Tran¹, J. Jung², J.B. DeShields³, D.C. Cerrato², M.H. Penner⁴, A.D. Levin⁵, Y. Zhao⁶ and E. Tomasino⁴,*

1. Graduate research Assistant, Food Science & Technology, OSU, Corvallis, OR,
2. Assistant Professor Senior Research Associate, Food Science & Technology, OSU, Corvallis, OR,
3. Faculty Research Assistant, Department of Horticulture, Southern Oregon Research Center, OSU, Central Point, OR,
4. Associate Professor, Food Science & Technology, OSU, Corvallis, OR,
5. Associate Professor, Department of Horticulture, Southern Oregon Research and Extension, Central Point, OR,
6. Professor, Food Science & Technology, OSU, Corvallis, OR

Contact the author*

Keywords

smoke, remediation, film, phenol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.