terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Abstract

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated. The film types varied in their chitosan and/or β-cyclodextrin composition. Film coatings were applied at veraison in vineyards in the Rogue Valley and Willamette Valley. The Rogue Valley experienced two smoke events during the season from wildfires in California. The grapes from Willamette Valley experience heavy smoke exposure using designed smoke cages. At harvest, half of the grapes were washed to remove the films. This was to determine if smoke phenols were blocked or bound to the film coatings. Further analysis of the interaction of smoke phenols with film coatings was done by observing any volatile phenol diffusion through the film using a custom-made polytetrafluoroethylene apparatus. Free and bound smoke phenols in grape juice were analyzed using GCMS and smoke glycosides using LCMS³. Results show some of the film coatings were effective in reducing the amount of smoke compounds absorbed into the grapes, primarily guaiacol, 4-methyl guaiacol, syringol and 4-methyl syringol. The cresol compounds were not greatly impacted. The collective results of this study show promise for film coatings as an effective preventative technique for grape smoke exposure. Optimization of the film coating formulation will lead to the reduction in smoke sensory characteristics in wine and ultimately diminish the loss of product.

 

1. McKay, M., Bauer, F., Panzeri, V., Mokwena, L., & Buica, A.S. (2019). Potentially smoke tainted red wines: volatile phenols and aroma attributes. South African Journal of Enology and Viticulture, 40(2).
2. Tran, T.T., Jung, J., Garcia, L., Deshields, J.B., Cerrato, D.C., Penner, M.H., Tomasino, E., Levin, A.D., & Zhao, Y.(2023). Impact of functional spray coatings on smoke volatile phenol compounds and Pinot noir grape growth. Journal of Food Science, 88, 367– 380. 
3. Liu, Z., Ezernieks, V., Reddy, P., Elkins, A., Krill, C., Murphy, K., Rochfort, S., Spangenberg, G. (2020). A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites, 10(7), 294.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

L. Garcia¹, T. Tran¹, J. Jung², J.B. DeShields³, D.C. Cerrato², M.H. Penner⁴, A.D. Levin⁵, Y. Zhao⁶ and E. Tomasino⁴,*

1. Graduate research Assistant, Food Science & Technology, OSU, Corvallis, OR,
2. Assistant Professor Senior Research Associate, Food Science & Technology, OSU, Corvallis, OR,
3. Faculty Research Assistant, Department of Horticulture, Southern Oregon Research Center, OSU, Central Point, OR,
4. Associate Professor, Food Science & Technology, OSU, Corvallis, OR,
5. Associate Professor, Department of Horticulture, Southern Oregon Research and Extension, Central Point, OR,
6. Professor, Food Science & Technology, OSU, Corvallis, OR

Contact the author*

Keywords

smoke, remediation, film, phenol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].