terclim by ICS banner
IVES 9 IVES Conference Series 9 USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

Abstract

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process. Cortese and Arneis grape juices were kept at 4 °C on their lees (manually suspended twice a day) during three different periods (7, 14, 21 days) and then compared to a control without stabulation. After the stabulation period, the lees were discarded and the juices fermented, cold stabilized, and bottled. The analyses were carried out at the end of stabulation, of the alcoholic fermentation and after one month from bottling. The chemical data obtained were supported with sensory analysis done by a trained panel on the wines after fermentation and bottling. The results showed that the cold liquid stabulation has an impact on the acidic composition of the produced wines for both varieties. The low temperature affected tartaric acid content, being it found lower already after 7 days of stabulation. Nevertheless, pH decreased in the samples stabulated for the longest time (21 days). Differences have been found on TPI of wines, even if in a different extent depending on the grape variety. In fact, on Arneis samples an increasing trend of TPI alongside antioxidant capacity was found, meanwhile in Cortese the stabulation led to a decrease in TPI, without differences in the antioxidant capacity among stabulated samples. This behaviour may be connected to the grape phenolic composition. After bottling, the produced wines were not sensory perceived different in terms of bitterness, astringency, and body. Nevertheless, Cortese stabulated wines at 14 and 21 days were preferred in terms of overall judgement with respect to control, in agreement with the higher content of volatile compounds. An increasing liking trend was found also for Arneis, whereas the highest content of volatile compounds corresponded to 7 days stabulation

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Camilla De Paolis¹, Andrea Zava¹, Giulia Motta¹, Lorenzo Ferrero¹, Simone Giacosa¹, Susana Río Segade¹, Vincenzo Gerbi ¹, Luca Rolle¹, Maria Alessandra Paissoni¹

1. University of Torino

Contact the author*

Keywords

pre-fermentative technique, polyphenolic compounds, volatiles compounds, antioxidant power

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.