GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Evaluation of the agronomic performance of cvs. Syrah and tempranillo when grafted on a new series of rootstocks developed in spain

Evaluation of the agronomic performance of cvs. Syrah and tempranillo when grafted on a new series of rootstocks developed in spain

Abstract

Context and purpose of the study ‐ The choice of an adequate rootstock is a key tool to improve the performance of grapevine varieties in different ‘terroirs’, as rootstocks confer adaptation to soil characteristics such as salinity, acidity, lime content or drought. Moreover, it is well‐known that rootstocks also have a significant influence on the growth and vegetative cycle of the plants and, consequently, on yield and grape quality, and they can be a relevant adaptation tool of viticulture in a changing climate. Therefore, it is essential to have a sufficient supply of rootstock varieties in order that the winegrowers can choose the best suited to the different growing conditions. However, since the beginning of the 20th century, the development of new grapevine rootstocks has been very limited, despite growers’ needs have changed dramatically. The objective of this study was to evaluate the agronomic performance of cvs. Syrah and Tempranillo when grafted on eight new rootstocks belonging to the RG‐Series, obtained by the Spanish nursery Vitis Navarra.

Material and methods ‐ The evaluation was performed during 4 consecutive seasons in a vineyard located in Miranda de Arga (Navarra, Spain), where Syrah and Tempranillo are grown grafted on 10 different rootstocks (eight new rootstocks and the two parental, 41B and 110R). The vineyard was planted following a completely randomized experimental design, with three replicates of ten vines. During the study period (2015‐2018), parameters related to growth, yield, and industrial and phenolic quality were collected in order to evaluate their performance.

Results ‐ The different rootstocks significantly modified growth, yield and quality parameters in both varieties, some showing very promising features for higher yielding vineyards, and some not so productive but interesting for higher quality grape production. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Diana MARÍN (1), Rafael GARCÍA (2), Javier ERASO (2), Jorge URRESTARAZU (1), Carlos MIRANDA (1), José Bernardo ROYO (1), Francisco Javier ABAD (1,3), Luis Gonzaga SANTESTEBAN (1)

(1) Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
(2) Vitis Navarra Nursery, Carretera Tafalla km 18, 31251 Larraga, Navarra, Spain
(3) INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

grapevine, growth, yield, industrial quality, phenolic quality

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

Immunotestπ: a new test for the determination of proteic stability in white and rosé wines

Proteic haze is a problem which may occur in all fruit-based beverages and fermented juices (beer, cider, wine). When it occurs, the economic loss is important.