GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Evaluation of the agronomic performance of cvs. Syrah and tempranillo when grafted on a new series of rootstocks developed in spain

Evaluation of the agronomic performance of cvs. Syrah and tempranillo when grafted on a new series of rootstocks developed in spain

Abstract

Context and purpose of the study ‐ The choice of an adequate rootstock is a key tool to improve the performance of grapevine varieties in different ‘terroirs’, as rootstocks confer adaptation to soil characteristics such as salinity, acidity, lime content or drought. Moreover, it is well‐known that rootstocks also have a significant influence on the growth and vegetative cycle of the plants and, consequently, on yield and grape quality, and they can be a relevant adaptation tool of viticulture in a changing climate. Therefore, it is essential to have a sufficient supply of rootstock varieties in order that the winegrowers can choose the best suited to the different growing conditions. However, since the beginning of the 20th century, the development of new grapevine rootstocks has been very limited, despite growers’ needs have changed dramatically. The objective of this study was to evaluate the agronomic performance of cvs. Syrah and Tempranillo when grafted on eight new rootstocks belonging to the RG‐Series, obtained by the Spanish nursery Vitis Navarra.

Material and methods ‐ The evaluation was performed during 4 consecutive seasons in a vineyard located in Miranda de Arga (Navarra, Spain), where Syrah and Tempranillo are grown grafted on 10 different rootstocks (eight new rootstocks and the two parental, 41B and 110R). The vineyard was planted following a completely randomized experimental design, with three replicates of ten vines. During the study period (2015‐2018), parameters related to growth, yield, and industrial and phenolic quality were collected in order to evaluate their performance.

Results ‐ The different rootstocks significantly modified growth, yield and quality parameters in both varieties, some showing very promising features for higher yielding vineyards, and some not so productive but interesting for higher quality grape production. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Diana MARÍN (1), Rafael GARCÍA (2), Javier ERASO (2), Jorge URRESTARAZU (1), Carlos MIRANDA (1), José Bernardo ROYO (1), Francisco Javier ABAD (1,3), Luis Gonzaga SANTESTEBAN (1)

(1) Dept. of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra, Campus Arrosadia, 31006 Pamplona, Navarra, Spain
(2) Vitis Navarra Nursery, Carretera Tafalla km 18, 31251 Larraga, Navarra, Spain
(3) INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain

Contact the author

Keywords

grapevine, growth, yield, industrial quality, phenolic quality

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Aroma profile of ‘Pedro Ximenez’ sweet musts obtained from dried grapes by different methods

Aroma fraction of musts from grapes ‘Pedro Ximenez’ traditionally sun-dried and chamber-dried at 40 ºC and at 50 ºC during 8, 5 and 4 days respectively, destined for the production of sweet wines in Montilla-Moriles region (southern Spain) was studied.

The smoking gun of climate change in wines

In this audio recording of the IVES science meeting 2022, Antonio Graca (Sogrape, Portugal) speaks about smoke taint and climate change. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.