Fully automated non-targeted GC-MS data analysis

Abstract

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition. 

Besides chromatographic techniques coupled to high resolution mass spectrometry such as LC-HRMS, gas chromatography with unit resolution mass spectrometry is still regularly utilized for non-targeted profiling or fingerprinting. This is mainly due to high separation power of GC and a wide availability and low costs of quadrupole mass spectrometers. 

Although several non-targeted approaches have been developed, data processing still remains a serious bottleneck. Baseline correction, feature detection, and retention time alignment can be prone to errors and time-consuming manual corrections are often necessary. We therefore developed an automated strategy to non-targeted GC-MS data avoiding feature detection and retention time alignment. The novel automated approach includes segmentation of chromatograms along the retention time axis, multiway decomposition of transformed segments followed by a supervised machine learning pipeline based on gradient boosted tree classification on the decomposed tensor [1, 2]. 

In order to make this novel data analysis strategy available to scientists without programming background, we developed a convenient browser based application. For the here presented interactive browser application the open source Python packages Bokeh and HoloViews were used. The application will be online freely available soon. 

[1] J. Vestner, G. de Revel, S. Krieger-Weber, D. Rauhut, M. du Toit, A. de Villiers, Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data. Acta Chimica Acta 911 (2016) 42-58 
[2] K. Sirén, U. Fischer, J. Vestner, Automated supervised learning pipeline for non-targeted GC-MS data analysis. Analytica Chimica Acta: X 1 (2019) 100005

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Jochen Vestner, Kimmo Sirén, Pierre Le Brun, Ulrich Fischer

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany
Institut National Supérieur des Sciences Agronomiques de l’Alimentation et de l’ Environnement, Agrosup Dijon, 6 boulevard Docteur Petitjean, 21000 Dijon, France
Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern

Contact the author

Keywords

metabolomics, non-targeted, GC-MS, exploratory data analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

High-resolution climate modelling for the Cognac region under climate change

Climate change has varied effects across French vineyards, with marked regional differences in temperature shifts. Fine-scale studies highlight significant local climate variability, emphasizing the need for precise regional characterization to adapt vineyard management at the regional scale.

Modeling viticultural landscapes: a GIS analysis of the viticultural potential in the Rogue Valley of Oregon

Terroir is a holistic concept that relates to both environmental and cultural factors that together influence the grape growing to wine production continuum. The physical factors that influence the process include matching a given grape variety to its ideal climate along with optimum site characteristics of elevation, slope, aspect, and soil

Why aren’t farmers using precision viticulture frequently? A case study

n the last years, viticulture precision tools have been made available for farmers for different crops. The feeling that these tools are mandatory on an agriculture of the future have been disseminated by commercial entities but also from policy makers.

Viñedos de la D.O. Ribeira Sacra: heterogeneidad varietal y sanitaria

La D.O. Ribeira Sacra (Galicia, N.O. de España) se distribuye a lo largo de las riberas de los ríos Miño y Sil. Su característica mas destacada son las fuertes pendientes. Desde 1990 se estudia el estado

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others