Fully automated non-targeted GC-MS data analysis

Abstract

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition. 

Besides chromatographic techniques coupled to high resolution mass spectrometry such as LC-HRMS, gas chromatography with unit resolution mass spectrometry is still regularly utilized for non-targeted profiling or fingerprinting. This is mainly due to high separation power of GC and a wide availability and low costs of quadrupole mass spectrometers. 

Although several non-targeted approaches have been developed, data processing still remains a serious bottleneck. Baseline correction, feature detection, and retention time alignment can be prone to errors and time-consuming manual corrections are often necessary. We therefore developed an automated strategy to non-targeted GC-MS data avoiding feature detection and retention time alignment. The novel automated approach includes segmentation of chromatograms along the retention time axis, multiway decomposition of transformed segments followed by a supervised machine learning pipeline based on gradient boosted tree classification on the decomposed tensor [1, 2]. 

In order to make this novel data analysis strategy available to scientists without programming background, we developed a convenient browser based application. For the here presented interactive browser application the open source Python packages Bokeh and HoloViews were used. The application will be online freely available soon. 

[1] J. Vestner, G. de Revel, S. Krieger-Weber, D. Rauhut, M. du Toit, A. de Villiers, Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data. Acta Chimica Acta 911 (2016) 42-58 
[2] K. Sirén, U. Fischer, J. Vestner, Automated supervised learning pipeline for non-targeted GC-MS data analysis. Analytica Chimica Acta: X 1 (2019) 100005

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Jochen Vestner, Kimmo Sirén, Pierre Le Brun, Ulrich Fischer

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany
Institut National Supérieur des Sciences Agronomiques de l’Alimentation et de l’ Environnement, Agrosup Dijon, 6 boulevard Docteur Petitjean, 21000 Dijon, France
Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern

Contact the author

Keywords

metabolomics, non-targeted, GC-MS, exploratory data analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Proposition of a simplified approach of the viticultural landscape

Une approche très simple de la lecture des paysages est proposée sur la base de l’expérience acquise par l’observation de divers terroirs du monde.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes).

Vine responses to two irrigation systems in the region of Vinhos Verdes

In this work we try to know the influence of two irrigation systems (Drip and Micro – jet ) with the same levels of water applied in an experimental vineyard in the region of Felgueiras.