Fully automated non-targeted GC-MS data analysis

Abstract

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition. 

Besides chromatographic techniques coupled to high resolution mass spectrometry such as LC-HRMS, gas chromatography with unit resolution mass spectrometry is still regularly utilized for non-targeted profiling or fingerprinting. This is mainly due to high separation power of GC and a wide availability and low costs of quadrupole mass spectrometers. 

Although several non-targeted approaches have been developed, data processing still remains a serious bottleneck. Baseline correction, feature detection, and retention time alignment can be prone to errors and time-consuming manual corrections are often necessary. We therefore developed an automated strategy to non-targeted GC-MS data avoiding feature detection and retention time alignment. The novel automated approach includes segmentation of chromatograms along the retention time axis, multiway decomposition of transformed segments followed by a supervised machine learning pipeline based on gradient boosted tree classification on the decomposed tensor [1, 2]. 

In order to make this novel data analysis strategy available to scientists without programming background, we developed a convenient browser based application. For the here presented interactive browser application the open source Python packages Bokeh and HoloViews were used. The application will be online freely available soon. 

[1] J. Vestner, G. de Revel, S. Krieger-Weber, D. Rauhut, M. du Toit, A. de Villiers, Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data. Acta Chimica Acta 911 (2016) 42-58 
[2] K. Sirén, U. Fischer, J. Vestner, Automated supervised learning pipeline for non-targeted GC-MS data analysis. Analytica Chimica Acta: X 1 (2019) 100005

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Jochen Vestner, Kimmo Sirén, Pierre Le Brun, Ulrich Fischer

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany
Institut National Supérieur des Sciences Agronomiques de l’Alimentation et de l’ Environnement, Agrosup Dijon, 6 boulevard Docteur Petitjean, 21000 Dijon, France
Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern

Contact the author

Keywords

metabolomics, non-targeted, GC-MS, exploratory data analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Delineation significance in viticultural zoning: examples in the Southern Côtes-du-Rhône

In order for a spatialized gestion of wine-producing areas, delineation of viticultural zones is needed. Viticultural zoning according to qualitative expression of varieties is a great concern

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Zonage viticole des surfaces potentielles dans la vallée Centrale de Tarija (Bolivie)

La présente étude de zonage viticole a été faite dans la région de la vallée Central de Tarija(VCT), dans la ville de Tarija, au Sud de la Bolivie; une région avec plus de 400 années de tradition qui présente une vitiviniculture de haute qualité. La Vallée possède une surface total de 332 milles ha.; existant des vignobles entre 1660 y 2300 m.s.n.m. et dans ce rang d’altitude il existe 91 mille ha.

Rapid damage assessment and grapevine recovery after fire

There is increasing scientific consensus that climate changeis the underlying cause of the prolonged dry and hot conditions that have increased the risk of extreme fire weather in many countries around the world. In December 2019, a bushfire event occurred in the Adelaide Hills, South Australia where 25,000 hectares were burnt and in vineyards and surrounding areas various degrees of scorching and infrastructure damage occurred. The ability to coordinate and plan recovery after a fire event relies on robust and timely data. The current practice for measuring the scale and distribution of fire damage is to walk or drive the vineyard and score individual vines based on visual observation. The process is time consuming, subjective, or semi-quantitative at best. After the December 2019 fires, it took many months to access properties and estimate the area of vineyard damaged. This study compares the rapid assessment and mapping of fire damage using high-resolution satellite imagery with more traditional ground based measures. Satellite imagery tracking vineyard recovery in the season following the bushfire is being correlated to field assessments of vineyard productivity such as canopy health and development, fertility and carbohydrate storage. Canopy health in the seasons following the fires correlated to the severity of the initial fire damage. Severely damaged vines had reduced canopy growth, were infertile or had very low fertility as well as lower carbohydrate levels in buds and canes during dormancy, which reduced productivity in the seasons following the bushfire event. In contrast, vines that received minor damage were able to recover within 1-2 years. Tools that rapidly and affordably capture the extent and severity of damage over large vineyard area will allow producers, government and industry bodies to manage decisions in relation to fire recovery planning, coordination and delivery, improving the efficiency and effectiveness of their response.

Zonazione e vitigni autoctoni nel sud della Basilicata: metodologie integrate per la caratterizzazione di ambienti di elezione di biotipi storici finalizzati a vini di territorio nella DOC “Terre dell’Alta Val d’Agri”

I territori della DOC “Terre dell’Alta Val d’Agri”, a Sud della regione Basilicata, si caratterizzano per una elevata biodiversità autoctona autoselezionatesi su ambienti ecologicamente ben definiti,