Fully automated non-targeted GC-MS data analysis

Abstract

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition. 

Besides chromatographic techniques coupled to high resolution mass spectrometry such as LC-HRMS, gas chromatography with unit resolution mass spectrometry is still regularly utilized for non-targeted profiling or fingerprinting. This is mainly due to high separation power of GC and a wide availability and low costs of quadrupole mass spectrometers. 

Although several non-targeted approaches have been developed, data processing still remains a serious bottleneck. Baseline correction, feature detection, and retention time alignment can be prone to errors and time-consuming manual corrections are often necessary. We therefore developed an automated strategy to non-targeted GC-MS data avoiding feature detection and retention time alignment. The novel automated approach includes segmentation of chromatograms along the retention time axis, multiway decomposition of transformed segments followed by a supervised machine learning pipeline based on gradient boosted tree classification on the decomposed tensor [1, 2]. 

In order to make this novel data analysis strategy available to scientists without programming background, we developed a convenient browser based application. For the here presented interactive browser application the open source Python packages Bokeh and HoloViews were used. The application will be online freely available soon. 

[1] J. Vestner, G. de Revel, S. Krieger-Weber, D. Rauhut, M. du Toit, A. de Villiers, Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data. Acta Chimica Acta 911 (2016) 42-58 
[2] K. Sirén, U. Fischer, J. Vestner, Automated supervised learning pipeline for non-targeted GC-MS data analysis. Analytica Chimica Acta: X 1 (2019) 100005

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Jochen Vestner, Kimmo Sirén, Pierre Le Brun, Ulrich Fischer

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany
Institut National Supérieur des Sciences Agronomiques de l’Alimentation et de l’ Environnement, Agrosup Dijon, 6 boulevard Docteur Petitjean, 21000 Dijon, France
Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern

Contact the author

Keywords

metabolomics, non-targeted, GC-MS, exploratory data analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Analysis of some environmental factors and cultural practices that affect the production and quality of the Manto Negro, Callet and Prensal Blanc varieties

45 non irrigated vineyards distributed in the DO (Denomination) Pla i Llevant de Mallorca and the DO Binissalem Mallorca were used to investigate the characteristics of production and quality and their relationships certain environmental factors and cultural practices. The grape varieties investigated are autochthonous to the island of Mallorca, Manto Negro and Callet as red and Prensal Blanc as white. All plants were measured for four consecutive years in the main production and quality parameters. Among the environmental factors, the type of soil has been studied, more specifically its water retention capacity, the planting density, the age of the vineyard and the level of viral infection. The presence or absence of virus seems to have no effect on any component studied in the varieties studied. For the white variety Prensal Blanc age is negatively correlated with production and the number of bunches, nevertheless it does not cause any effect on the required quality parameters. However, for the red varieties Callet and Manto Negro, the age of the plantation is the variable that best correlates with the quality parameters, therefore the old vines should be the object of preservation by the viticulturists and winemakers in order to guarantee its contribution to the quality of the wines made with these varieties.

Le terre dei Lambruschi modenesi

La superficie vitata della provincia di Modena é per circa il 70% interessata dai Lambruschi, famiglia di vitigni tipica dei territori pianeggianti emiliani. Tra questi, i più rappresentativi sono il Lambrusco di Sorbara, il Lambrusco salamino e il Lambrusco grasparossa che, unico esempio, predilige gli ambienti collinari della provincia. Nel quinquennio 2001-2005 la Provincia di Modena ed il C.R.P.V. hanno coordinato la zonazione viticola di tutto il territorio dei Lambruschi modenesi, i cui risultati hanno consentito di individuare, in ciascuna zona D.O.C., alcune Terre in cui cias.

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops.

The Albariño route in Uruguay: A clonal selection process to produce quality wines

In recent years, Uruguay has embraced the Albariño grape variety (Vitis vinifera L.) as one of the most promising for commercial growth. Originally cultivated in Galicia and northern Portugal, Albariño has risen to prominence in the global wine market, driving strong demand and significantly increasing grape prices [1].

Determinazione della frazione aromatica dei vini, quale strumento per-la valorizzazione del territorio viticolo

La caratterizzazione della frazione volatile aromatica dei vini attraverso l’analisi quali­quantitativa dei diversi composti, ha portato corne primo risultato la netta differenziazione delle annate in prova.