Fully automated non-targeted GC-MS data analysis

Abstract

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition. 

Besides chromatographic techniques coupled to high resolution mass spectrometry such as LC-HRMS, gas chromatography with unit resolution mass spectrometry is still regularly utilized for non-targeted profiling or fingerprinting. This is mainly due to high separation power of GC and a wide availability and low costs of quadrupole mass spectrometers. 

Although several non-targeted approaches have been developed, data processing still remains a serious bottleneck. Baseline correction, feature detection, and retention time alignment can be prone to errors and time-consuming manual corrections are often necessary. We therefore developed an automated strategy to non-targeted GC-MS data avoiding feature detection and retention time alignment. The novel automated approach includes segmentation of chromatograms along the retention time axis, multiway decomposition of transformed segments followed by a supervised machine learning pipeline based on gradient boosted tree classification on the decomposed tensor [1, 2]. 

In order to make this novel data analysis strategy available to scientists without programming background, we developed a convenient browser based application. For the here presented interactive browser application the open source Python packages Bokeh and HoloViews were used. The application will be online freely available soon. 

[1] J. Vestner, G. de Revel, S. Krieger-Weber, D. Rauhut, M. du Toit, A. de Villiers, Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data. Acta Chimica Acta 911 (2016) 42-58 
[2] K. Sirén, U. Fischer, J. Vestner, Automated supervised learning pipeline for non-targeted GC-MS data analysis. Analytica Chimica Acta: X 1 (2019) 100005

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Jochen Vestner, Kimmo Sirén, Pierre Le Brun, Ulrich Fischer

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, D-67435 Neustadt, Germany
Institut National Supérieur des Sciences Agronomiques de l’Alimentation et de l’ Environnement, Agrosup Dijon, 6 boulevard Docteur Petitjean, 21000 Dijon, France
Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern

Contact the author

Keywords

metabolomics, non-targeted, GC-MS, exploratory data analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Simulating berry sunburn in virtual vineyards

Context and purpose of the study. Berry sunburn in vineyards is a recurring disorder that can cause severe yield loss. As sunburn observations are often associated with heat waves, a link to climate change is likely.

Effect of climate and soil on phenology and ripening of Vitis vinifera cv Touriga acional in the Dão region

“Terroir” has been acknowledged as an important factor in wine quality
and style. It can be defined as an interaction between climate, soil, vine (cultivar, rootstock) and human
factors such as viticultural and enological techniques. Soil and climate are the two components of the “Terroir” with an important role on the vine development and berries ripening. The present study is focused on the effects of the weather conditions and the soil characteristics on the phenological and berries ripening dynamics of the “Touriga Nacional” in Dão region.

Traditional agroforestry vineyards, sources of inspiration for the agroecological transition of viticulture

A unique “terroir” can be found in southern Bolivia, which combines the specific features of climate, topography and altitude of high valleys, with the management of grapevines staked on trees. It is one of the rare remnants of agroforestry viticulture. A survey was carried out among 29 grapegrowers in three valleys, to characterize the structure and management of these vineyards, and identify the services they expect from trees. Farms were small (2.2 ha on average) and 85% of vineyards were less than 1 ha. Viticulture was associated with vegetable, fruit and fodder production, sometimes in the same fields. Molle trees were found in all plots, together with one or two other native tree species. Traditional grapevine varieties such as Negra Criolla, Moscatel de Alejandría and Vicchoqueña were grown with a large range of densities from 1550 to 9500 vines ha-1. From 18 to 30% of them were staked on trees, with 1.2 to 4.9 vines per tree. The management of these vineyards (irrigation, fertilization and grapevine protection) was described, the most particular technical operation being the coordinated pruning of trees and grapevines. Three types of management could be identified in the three valleys. Grapegrowers had a clear idea of the ecosystem services they expected from trees in their vineyards. The main one was protection against climate hazards (hail, frost, flood). Then they expected benefits in terms of pest and disease control, improvement of soil fertility and resulting yield. At last, some producers claimed that tree-staking was quicker and cheaper than conventional trellising. It can be hypothesized then that agroforestry is a promising technique for the agroecological transition of viticulture. Its contribution to the “terroir” of the high valleys of southern Bolivia and its link with the specificities of the wines and spirits produced there remain to be explored.

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Quantification of newly identified C8 aroma compounds in musts and wines as an analytical tool for the early detection of Fresh Mushroom Off-Flavor

The Fresh Mushroom Off-Flavor (FMOff) is a concerning undesirable aroma in wine specific of certain vintages, characterized by a typical button mushroom aroma. The appearance of this off-flavor is linked to the presence of certain fungus on the grape [1-3].