GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Do high temperature extremes impact berry tannin composition?

Do high temperature extremes impact berry tannin composition?

Abstract

Context and purpose of the study – Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Material and methods – Three potted-vine experiments were conducted inside a UV-transparent glasshouse during the 2016-17 and 2018-19 seasons. Using fans blowing hot air onto individual bunches without affecting light exposure, several temperature-related parameters were tested on well-irrigated Shiraz vines. In order, these examined high day and/or night temperatures after fruit set (E-L 31, Coombes, 1995), day temperature intensities (Low: LT, High: HT and Very High: VHT) and durations (3 to 39 h) after véraison (E-L 36, ~10 °Brix), and high day temperature at two phenological stages (E-L 31 and/or E-L 36). Berries were sampled at regular intervals, peeled, ground, and skin and seed tannin composition individually analysed by LC-MS/MS after phloroglucinolysis.

 Results – During Experiment 1, heat treatments were applied for three days (+8 °C) and/or three nights (+6 °C), with day maximum temperature reaching 44.8 °C and night maximum temperature reaching 32.8 °C. Berry size was immediately affected by day temperature, while skin tannin exhibited small differences with an increase in percentage of galloylation 15 days after the end of the treatment. During Experiment 2, LT, HT and VHT respectively reached a maximum of 37, 45, and 53 °C. VHT considerably impacted on berry physiology and composition, regardless of the treatment duration (12 or 30 h), leading to berry desiccation. Tannins extracted from the dried skin were significantly reduced with some flavan-3-ol subunits proportionally more degraded than others. While the effect on skin was substantial, seed tannins were only slightly affected. Night temperature at E-L 31 (Experiment 1) and day HT at E-L 36 (Experiment 2) affected other primary metabolites but not tannin composition. Experiment 3, conducted during the 2018-19 season, combined parameters for which tannin composition was affected during season 2016-17 to confirm observed trends.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Julia GOUOT (1,2), Jason SMITH (1,3), Bruno HOLZAPFEL (1,4), Celia BARRIL (1,2)

(1) National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
(2) School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia
(3) New South Wales Department of Primary Industries, Orange, New South Wales, 2800, Australia
(4) New South Wales Department of Primary Industries, Wagga Wagga, New South Wales, 2678, Australia

Contact the author

Keywords

Berry composition, Bunch heating, Day, Heat stress, High temperature, Phenological stage, Tannins.

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Estudios de zonificación vitícola en España

La delimitación y caracterización de zonas vitícolas plantea en España problemas específicos no sólo por las características peculiares del territorio sino también por el tamaño

The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

In recent years, the ageing bouquet of red Bordeaux wines has been partially unveiled by a chemical and sensory point of view1–3. Minty and fresh notes were found to play a key role in the definition of this complex concept, moreover the freshness dimension in fine aged red wines plays an important role in typicity judgement by wine professionals

Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Muscat of Alexandria is one of the oldest cultivars still existing, globally recognized for its distinctive aroma, and the primary grape variety cultivated in the Greek Island of Lemnos, yielding various white wines with designated origins.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.