GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Do high temperature extremes impact berry tannin composition?

Do high temperature extremes impact berry tannin composition?

Abstract

Context and purpose of the study – Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Material and methods – Three potted-vine experiments were conducted inside a UV-transparent glasshouse during the 2016-17 and 2018-19 seasons. Using fans blowing hot air onto individual bunches without affecting light exposure, several temperature-related parameters were tested on well-irrigated Shiraz vines. In order, these examined high day and/or night temperatures after fruit set (E-L 31, Coombes, 1995), day temperature intensities (Low: LT, High: HT and Very High: VHT) and durations (3 to 39 h) after véraison (E-L 36, ~10 °Brix), and high day temperature at two phenological stages (E-L 31 and/or E-L 36). Berries were sampled at regular intervals, peeled, ground, and skin and seed tannin composition individually analysed by LC-MS/MS after phloroglucinolysis.

 Results – During Experiment 1, heat treatments were applied for three days (+8 °C) and/or three nights (+6 °C), with day maximum temperature reaching 44.8 °C and night maximum temperature reaching 32.8 °C. Berry size was immediately affected by day temperature, while skin tannin exhibited small differences with an increase in percentage of galloylation 15 days after the end of the treatment. During Experiment 2, LT, HT and VHT respectively reached a maximum of 37, 45, and 53 °C. VHT considerably impacted on berry physiology and composition, regardless of the treatment duration (12 or 30 h), leading to berry desiccation. Tannins extracted from the dried skin were significantly reduced with some flavan-3-ol subunits proportionally more degraded than others. While the effect on skin was substantial, seed tannins were only slightly affected. Night temperature at E-L 31 (Experiment 1) and day HT at E-L 36 (Experiment 2) affected other primary metabolites but not tannin composition. Experiment 3, conducted during the 2018-19 season, combined parameters for which tannin composition was affected during season 2016-17 to confirm observed trends.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Julia GOUOT (1,2), Jason SMITH (1,3), Bruno HOLZAPFEL (1,4), Celia BARRIL (1,2)

(1) National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
(2) School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia
(3) New South Wales Department of Primary Industries, Orange, New South Wales, 2800, Australia
(4) New South Wales Department of Primary Industries, Wagga Wagga, New South Wales, 2678, Australia

Contact the author

Keywords

Berry composition, Bunch heating, Day, Heat stress, High temperature, Phenological stage, Tannins.

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Typology of wines in touch with environmental factors of terroirs and grapevine. Application to the Chinon vineyard

According to the vintage, it may be difficult for vine growers to make a decision regarding the type of wine in relation with the soils.

Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Air temperature is arguably one of the most decisive factors for winegrape varieties developmental cycle, ripening potential and yield.

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

The origin and the discovery of “terroir”

Le mot “terroir” dérive du latin “terra”, mais déjà les Romains l’indiquaient comme “locus” ou”loci”, c’est-à-dire un lieu ayant le “genius”destiné à la production d’un produit d’excellente qualité.

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle.