GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Do high temperature extremes impact berry tannin composition?

Do high temperature extremes impact berry tannin composition?

Abstract

Context and purpose of the study – Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Material and methods – Three potted-vine experiments were conducted inside a UV-transparent glasshouse during the 2016-17 and 2018-19 seasons. Using fans blowing hot air onto individual bunches without affecting light exposure, several temperature-related parameters were tested on well-irrigated Shiraz vines. In order, these examined high day and/or night temperatures after fruit set (E-L 31, Coombes, 1995), day temperature intensities (Low: LT, High: HT and Very High: VHT) and durations (3 to 39 h) after véraison (E-L 36, ~10 °Brix), and high day temperature at two phenological stages (E-L 31 and/or E-L 36). Berries were sampled at regular intervals, peeled, ground, and skin and seed tannin composition individually analysed by LC-MS/MS after phloroglucinolysis.

 Results – During Experiment 1, heat treatments were applied for three days (+8 °C) and/or three nights (+6 °C), with day maximum temperature reaching 44.8 °C and night maximum temperature reaching 32.8 °C. Berry size was immediately affected by day temperature, while skin tannin exhibited small differences with an increase in percentage of galloylation 15 days after the end of the treatment. During Experiment 2, LT, HT and VHT respectively reached a maximum of 37, 45, and 53 °C. VHT considerably impacted on berry physiology and composition, regardless of the treatment duration (12 or 30 h), leading to berry desiccation. Tannins extracted from the dried skin were significantly reduced with some flavan-3-ol subunits proportionally more degraded than others. While the effect on skin was substantial, seed tannins were only slightly affected. Night temperature at E-L 31 (Experiment 1) and day HT at E-L 36 (Experiment 2) affected other primary metabolites but not tannin composition. Experiment 3, conducted during the 2018-19 season, combined parameters for which tannin composition was affected during season 2016-17 to confirm observed trends.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Julia GOUOT (1,2), Jason SMITH (1,3), Bruno HOLZAPFEL (1,4), Celia BARRIL (1,2)

(1) National Wine and Grape Industry Centre, Wagga Wagga, New South Wales, 2678, Australia
(2) School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, 2678, Australia
(3) New South Wales Department of Primary Industries, Orange, New South Wales, 2800, Australia
(4) New South Wales Department of Primary Industries, Wagga Wagga, New South Wales, 2678, Australia

Contact the author

Keywords

Berry composition, Bunch heating, Day, Heat stress, High temperature, Phenological stage, Tannins.

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition

Does the sustainability perception depend on the Terroir?

The main scope of this research has been to investigate what values are attributed to the concept of “sustainability” by the wine producers of two different wine territories of Piedmont; the terroir of the Barolo DOCG and the the terroir of the Gavi DOCG. The research wants to emphasize how much the characteristic elements of each terroir influence the perception of the concept of sustainability among producers.

Produce wines with no quantifiable phytosanitary residues – Impact of washing grapes?

Consumer expectations are increasingly shifting towards “residue-free wines.” However, from an analytical standpoint, “zero” does not exist. Laboratories often use the quantification limits of analysis methods to signify ‘zero.’ Improved techniques now allow for the quantification of levels that were previously undetectable. This is why we prefer to use the term “unquantifiable residue” rather than “absence of residues.”

Cork and Wine: interactions and newly formed compounds

When the cork is in direct contact with an alcoholic solution such as in case of a bottle wine, some cork components can migrate into the wine.