terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Abstract

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

For this purpose, this equipment has been designed, built and prepared and has been validated with the measurement of red wines made from different grape varieties.

The equipment built has 2 mm quartz cuvettes for the measurement of the spectrum in the visible with a spectrophotometer and a sensor for the simultaneous measurement of dissolved oxygen with a luminescent measurement system, both measurements were carried out every 15 minutes during oxy-gen consumption. The tightness of the cuvettes during the process of measuring the kinetics of oxygen consumption was evaluated, as well as the reproducibility of the measurements of both parameters.

The results of this study show that the equipment designed and built is valid for monitoring the kinetics of oxygen consumption with the simultaneous measurement of the spectrum in the visible and dissolved oxygen. The tightness tests corroborated that all the cells used simultaneously are airtight, keeping their interior totally isolated from the exterior, showing a variability between cells of less than 10%. The results of the repeatability tests showed that the same wine measured simultaneously in the different cuvettes showed the same results both in the measurement of the consumption kinetics and in the measurement of the spectrum in the visible. The application of the system developed for the study of red wines allowed to know the characteristics of the consumption kinetics, obtaining that all red wines were initially able to take up the same amounts of oxygen (Omax), with values of 174 hPa. However, the wines made with Tempranillo grapes showed higher oxygen consumption (∆Omax_min), 115 hPa, and lower residual oxygen values (Omin), 59 hPa compared to than those made with the Garnacha grapes with 84 y 88 hPa of Omin and ∆Omax_min, respectively. One of the main advantages of this equipment is the ability to record the changes produced in the spectrum as the wine consumes oxygen, thus, an increase in red tones (450 and 580 nm) was observed in all the wines studied. It was found that the wines made with the Garnacha grapes underwent increases in absorbance between 400 and 460 nm and between 610 and 670 nm as they consumed oxygen, indicating an increase in the compounds responsible for the purple and yellow hues. On the other hand, wines made with the Tempranillo grapes, as they consumed oxygen, showed a decrease in purple hues.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marioli Alejandra, Carrasco-Quiroz ¹, Ignacio Nevares ², Ana Martinez-Gil ¹, Rubén Del Barrio-Galan ¹. Maria Asensio-Cuadrado ², Maria Del Alamo-Sanza ¹
1. Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain.
2. Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author*

Keywords

Oxygen consumption, colour, wine, kinetics

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.