terclim by ICS banner
IVES 9 IVES Conference Series 9 OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

Abstract

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance. Due to the reactivity (Danilewicz, 2003) and short half-life (10-6-10-9s) of ROS in aqueous solution (Pryor, 1986), their direct quantitation in wine is impossible. However, by means of spin-trapping technique, the radicals can form relatively stable adducts with spin-trap, and thus be monitored in real-time by electron paramagnetic resonance (EPR) (Elias et al., 2009b).

This study aims to optimize and validate an EPR spin trapping method using POBN as spin trap, to monitor the formation kinetic of 1-HER in chardonnay white wine and investigate the impact of some enological parameters (pH, ethanol, acidity, sulfites) on their formation. 1-HERs were generated by Fenton reaction (Fe²+ and H₂O₂) in chardonnay wines. The relative amount of reactant was optimized. In addition, several strategies were developed to decrease the impact of bisulfite on the detection of EPR signal. Finally, the analytical method was validated in terms of repeatability and reproducibility and applied to many chardonnay wines. To some extent, this study provides new insights into radical behavior that may contribute to comprehensive understanding of the oxidative stability of chardonnay white wines.

 

1. Danilewicz, J.C., 2003. Review of Reaction Mechanisms of Oxygen and Proposed Intermediate Reduction Products in Wine: Central Role of Iron and Copper. Am. J. Enol. Vitic. 54, 73–85.
2. Elias, R.J., Andersen, M.L., Skibsted, L.H., Waterhouse, A.L., 2009a. Key Factors Affecting Radical Formation in Wine Studied by Spin Trapping and EPR Spectroscopy. Am. J. Enol. Vitic. 60, 471–476.
3. Elias, R.J., Andersen, M.L., Skibsted, L.H., Waterhouse, A.L., 2009b. Identification of Free Radical Intermediates in Oxidized Wine Using Electron Paramagnetic Resonance Spin Trapping. J. Agric. Food Chem. 57, 4359–4365.
4. Pryor, W.A., 1986. Oxy-Radicals and Related Species: Their Formation, Lifetimes, and Reactions. Annu. Rev. Physiol. 48, 657–667.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Pei Han 1,2, Alexandre Pons1,2,3
1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Seguin Moreau France, Z.I. Merpins, BP 94, 16103 Cognac, France

Contact the author*

Keywords

chardonnay, radical, wine oxidation, EPR

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.