terclim by ICS banner
IVES 9 IVES Conference Series 9 THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Abstract

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay. A total of twenty wines were made under the same experimental conditions. The flavanol fractions were isolated from the samples using C18 solid phase extraction cartridges. A LC-MS system was used for analysis, composed by an HPLC couples to a mass spectroscopy system (triple-quadrupole ESI-MS/MS). Catechin and epicatechin registered the higher relative abundance in all typologies as expected. In the skins, the percentage of catechin was significantly higher than that of epicatechin while the opposite was observed in the seeds. In agreement with literature, the relative proportion of gallates was much higher in the seed than in the skins, while pro-dephinidins (PD%) exceeded 10% in skins and were found at traces levels in seeds. There were no differences among cultivars in the skins flavanol profile, but in the seeds, Marselan had a characteristic high proportion of catechin that almost matched that of epicatechin. Moreover, Tannat had higher proportion of epicatechin-gallate than catechin-gallate, while the opposite was registered in Syrah and Marselan. The seed-pomace flavan-3-ol monomers profile matched that of the seeds in the three-cultivar studied, showing that all compounds were extracted at the same rate along maceration. Nevertheless, the skin-pomace had a much higher proportion of epicatechin and of gallates that observed in skins, and a much lower of PD. These differences were of higher magnitude in the flavan-3-ol monomers profile, and in Marselan, which wines had a much higher contribution of flavanols from the seeds (observed as low PD% and high of gallates and epicatechin) than Tannat and Syrah. In Syrah and Tannat wines, the PD% was just slightly lower than in skins, while in Marselan they were much lower. Thus, skins adsorb fla-vanols released from seeds during maceration, while the trihydroxylated prodelphinidin monomers are the more easily extracted flavanols from skins.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sergio Gómez-Alonso², José Pérez-Navarro², Esteban García-Romero³, Adela Mena-Morales³, Diego Piccardo¹, Gustavo Gon-zález-Neves¹

1. Facultad de Agronomía (Universidad de la República). Avda. Garzón 780. C.P., 12900 Montevideo, Uruguay 
2. Instituto Regional de Investigación Científica Aplicada (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain 
3. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IVICAM-IRIAF), Ctra. Albacete s/n, 13700 Tomelloso, Spain

Contact the author*

Keywords

Tannins, Flavanols, Winemaking, Extraction

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.