terclim by ICS banner
IVES 9 IVES Conference Series 9 THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Abstract

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay. A total of twenty wines were made under the same experimental conditions. The flavanol fractions were isolated from the samples using C18 solid phase extraction cartridges. A LC-MS system was used for analysis, composed by an HPLC couples to a mass spectroscopy system (triple-quadrupole ESI-MS/MS). Catechin and epicatechin registered the higher relative abundance in all typologies as expected. In the skins, the percentage of catechin was significantly higher than that of epicatechin while the opposite was observed in the seeds. In agreement with literature, the relative proportion of gallates was much higher in the seed than in the skins, while pro-dephinidins (PD%) exceeded 10% in skins and were found at traces levels in seeds. There were no differences among cultivars in the skins flavanol profile, but in the seeds, Marselan had a characteristic high proportion of catechin that almost matched that of epicatechin. Moreover, Tannat had higher proportion of epicatechin-gallate than catechin-gallate, while the opposite was registered in Syrah and Marselan. The seed-pomace flavan-3-ol monomers profile matched that of the seeds in the three-cultivar studied, showing that all compounds were extracted at the same rate along maceration. Nevertheless, the skin-pomace had a much higher proportion of epicatechin and of gallates that observed in skins, and a much lower of PD. These differences were of higher magnitude in the flavan-3-ol monomers profile, and in Marselan, which wines had a much higher contribution of flavanols from the seeds (observed as low PD% and high of gallates and epicatechin) than Tannat and Syrah. In Syrah and Tannat wines, the PD% was just slightly lower than in skins, while in Marselan they were much lower. Thus, skins adsorb fla-vanols released from seeds during maceration, while the trihydroxylated prodelphinidin monomers are the more easily extracted flavanols from skins.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sergio Gómez-Alonso², José Pérez-Navarro², Esteban García-Romero³, Adela Mena-Morales³, Diego Piccardo¹, Gustavo Gon-zález-Neves¹

1. Facultad de Agronomía (Universidad de la República). Avda. Garzón 780. C.P., 12900 Montevideo, Uruguay 
2. Instituto Regional de Investigación Científica Aplicada (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain 
3. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IVICAM-IRIAF), Ctra. Albacete s/n, 13700 Tomelloso, Spain

Contact the author*

Keywords

Tannins, Flavanols, Winemaking, Extraction

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.