terclim by ICS banner
IVES 9 IVES Conference Series 9 THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Abstract

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay. A total of twenty wines were made under the same experimental conditions. The flavanol fractions were isolated from the samples using C18 solid phase extraction cartridges. A LC-MS system was used for analysis, composed by an HPLC couples to a mass spectroscopy system (triple-quadrupole ESI-MS/MS). Catechin and epicatechin registered the higher relative abundance in all typologies as expected. In the skins, the percentage of catechin was significantly higher than that of epicatechin while the opposite was observed in the seeds. In agreement with literature, the relative proportion of gallates was much higher in the seed than in the skins, while pro-dephinidins (PD%) exceeded 10% in skins and were found at traces levels in seeds. There were no differences among cultivars in the skins flavanol profile, but in the seeds, Marselan had a characteristic high proportion of catechin that almost matched that of epicatechin. Moreover, Tannat had higher proportion of epicatechin-gallate than catechin-gallate, while the opposite was registered in Syrah and Marselan. The seed-pomace flavan-3-ol monomers profile matched that of the seeds in the three-cultivar studied, showing that all compounds were extracted at the same rate along maceration. Nevertheless, the skin-pomace had a much higher proportion of epicatechin and of gallates that observed in skins, and a much lower of PD. These differences were of higher magnitude in the flavan-3-ol monomers profile, and in Marselan, which wines had a much higher contribution of flavanols from the seeds (observed as low PD% and high of gallates and epicatechin) than Tannat and Syrah. In Syrah and Tannat wines, the PD% was just slightly lower than in skins, while in Marselan they were much lower. Thus, skins adsorb fla-vanols released from seeds during maceration, while the trihydroxylated prodelphinidin monomers are the more easily extracted flavanols from skins.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sergio Gómez-Alonso², José Pérez-Navarro², Esteban García-Romero³, Adela Mena-Morales³, Diego Piccardo¹, Gustavo Gon-zález-Neves¹

1. Facultad de Agronomía (Universidad de la República). Avda. Garzón 780. C.P., 12900 Montevideo, Uruguay 
2. Instituto Regional de Investigación Científica Aplicada (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela s/n, 13071 Ciudad Real, Spain 
3. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IVICAM-IRIAF), Ctra. Albacete s/n, 13700 Tomelloso, Spain

Contact the author*

Keywords

Tannins, Flavanols, Winemaking, Extraction

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.