DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE
Abstract
Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).
Yeast cellular autolysis facilitates the diffusion of proteins and peptides into the wine. Associated with protease activity, amino acids can be released during ageing. The organic nitrogen content of wines and lees post-fermentation is not yet fully understood. This study explored the quantities of free amino acids, potential amino acids, and protease activity in champagne still wines and their corresponding lees. To achieve this analysis, a new quantification method to detect protease activity was developed using fluorescein isothiocyanate bound to a casein substrate.
In addition, the current method used to quantify potential amino acids after acid hydrolysis was optimized and associated to the previously published HPLC/FLD method for quantifying free amino acids(2). The methods were also adapted for quantifying lees. This analytical toolbox allows the observation of nitrogen compound kinetics over time, and was subsequently applied to sixteen young wines and their corresponding lees. The results of this study highlight a high variability in amino acid content between wines and lees. This suggests huge differences between amino acids levels in wine and in lees. No direct correlation was observed between lees quantity and the concentration of free and potential amino acids, indicating the mechanism is more complex. After 5 months of wine ageing with lees contact, the wines with lower levels of amino acids showed higher protease activity. That result encourages us to continue studying yeast lees and their variable capacities to release amino acids into wine over time.
DOI:
Issue: OENO Macrowine 2023
Type: Poster
Authors
Contact the author*
Keywords
Nitrogen, relesable nitrogen, lees, ageing