OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

Abstract

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF). In order to have a clearer picture of the metabolic signature of the bacteria in wine during the MLF, we have analyzed the exometabolome before and after MLF of wine fermented with 6 different yeast strains and 2 different bacteria. To this purpose, metabolomics analyses were carried out by LC-TOF-MS. 

The PCA analyses of the metabolomics data clearly distinguish samples at the end of alcoholic fermentation from samples after malolactic fermentation and samples from co-inoculation. These results confirmed the impact of bacteria on wine metabolome but also underlined the fact that co-inoculation of bacteria with yeast in must does not result in the same wine than sequential inoculation, from a metabolite point of view. This result clearly indicates that both matrix (must or wine) and yeast bacteria interactions are responsible for the observed differences. A focus on the comparison of wine before and after malolactic fermentation conducted by the lactic acid bacteria VP41 revealed a clear cut difference between the wines as represented by PLS-DA. These results confirmed the drastic changes of the wines due to malolactic fermentation. Some of the compounds catabolised or synthesized by the bacteria during MLF allows to identify specific metabolic pathway involved during MLF such as for example glycosyl hydrolases, which convert flavonoid glycosides to the corresponding aglycones, and esterase, degrading methyl gallate, tannins, or phenolic acid ester.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Liu Youzhong (1,2), Gougeon Régis (3), Bou-Déléris Magali (4), Krieger-Weber Sybille (4), Schmitt-Kopplin Philippe (5,6),

Presenting author

Alexandre Hervé3

1-Department of Mathematics and Computer Science, Advanced Database Research and Modelling (ADReM), University of Antwerp, Antwerp, Belgium
2-Biomedical Informatics Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
3-UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France
4-Lallemand SAS, 19 rue des Briquetiers, Blagnac, France
5-Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
6-Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

Contact the author

Keywords

bacteria, malolactic fermentation, metabolomic, wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.

Genetic determinism of grapevine development stages as a tool for the adaptation to climate change

A major goal of modern grapevine (Vitis vinifera L.) breeding programs is the introgression of resistance genes along with desirable traits for better adaptation to climate change. Developmental stages have an impact on yield components and berry composition and are expected to shift towards earlier dates in the future. We investigated the genetic determinism of phenological stages in the progeny of a cross between two grapevine hybrids, each carrying several quantitative trait loci (QTL) for downy mildew and powdery mildew resistance.

Impact of soil-applied and foliar-applied nitrogen on grape and wine composition

Foliar application of urea may be an efficient way to alter grape and wine composition without increasing vine vigor. However, we know little about the impact of this practice on phenolic compounds and yeast assimilable nitrogen (YAN). Adequate YAN is required for an efficient and complete fermentation, while phenolics are particularly important for the sensory profile of red wines. The goal of this study is to test the impact of foliar urea application at veraison, compared to the traditional soil-applied nitrogen fertilization early in the season, on Syrah berry and wine composition in field conditions.

The social construction of wine-growing areas: the “Graves de Bordeaux”

«Graves de Bordeaux» est une des rares appellations à porter le nom d’un terroir, au sens agronomique du terme. Et ce territoire vitivinicole présente une relative unité géographique, de Langon à Bordeaux sur la rive gauche de la Garonne.