OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

Abstract

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF). In order to have a clearer picture of the metabolic signature of the bacteria in wine during the MLF, we have analyzed the exometabolome before and after MLF of wine fermented with 6 different yeast strains and 2 different bacteria. To this purpose, metabolomics analyses were carried out by LC-TOF-MS. 

The PCA analyses of the metabolomics data clearly distinguish samples at the end of alcoholic fermentation from samples after malolactic fermentation and samples from co-inoculation. These results confirmed the impact of bacteria on wine metabolome but also underlined the fact that co-inoculation of bacteria with yeast in must does not result in the same wine than sequential inoculation, from a metabolite point of view. This result clearly indicates that both matrix (must or wine) and yeast bacteria interactions are responsible for the observed differences. A focus on the comparison of wine before and after malolactic fermentation conducted by the lactic acid bacteria VP41 revealed a clear cut difference between the wines as represented by PLS-DA. These results confirmed the drastic changes of the wines due to malolactic fermentation. Some of the compounds catabolised or synthesized by the bacteria during MLF allows to identify specific metabolic pathway involved during MLF such as for example glycosyl hydrolases, which convert flavonoid glycosides to the corresponding aglycones, and esterase, degrading methyl gallate, tannins, or phenolic acid ester.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Liu Youzhong (1,2), Gougeon Régis (3), Bou-Déléris Magali (4), Krieger-Weber Sybille (4), Schmitt-Kopplin Philippe (5,6),

Presenting author

Alexandre Hervé3

1-Department of Mathematics and Computer Science, Advanced Database Research and Modelling (ADReM), University of Antwerp, Antwerp, Belgium
2-Biomedical Informatics Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
3-UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France
4-Lallemand SAS, 19 rue des Briquetiers, Blagnac, France
5-Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
6-Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

Contact the author

Keywords

bacteria, malolactic fermentation, metabolomic, wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Synthesis of the contribution of the Giesco (group of international experts of vitivinicultural systems for cooperation) to the study of terroirs

Since 1998, the GiESCO (previously named GESCO: Groupe d’Etude des Systèmes de COnduite de la vigne) has provided the scientific community with relevant contributions to the study of terroirs. Here is a synthesis of the main terroir-related fields and the major ideas the GiESCO has developed: Basic Terroir Unit and climate, Vine Ecophysiology and microclimate – moderate drought, Vineyard heterogeneity and new technologies, Viticultural Terroir Unit and canopy management, Terroir – Territory and man.

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Ecodesign tools and approaches in viticulture for professionals and learners, contributions of the Vitarbae project

The agro-ecological transition in winegrowing can benefit from the environmental assessment of practices to inform producers’ technical choices. life cycle assessment (lca) evaluates the environmental impact of a product over its entire life cycle. this paper takes a look at the tools available for the detailed assessment and eco-design of winegrowing practices, their uses and developments in the vitarbae research project (2023-2026). this project aims to establish and equip support and training courses for the agroecological transition in viticulture and fruit arboriculture.