OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

Abstract

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF). In order to have a clearer picture of the metabolic signature of the bacteria in wine during the MLF, we have analyzed the exometabolome before and after MLF of wine fermented with 6 different yeast strains and 2 different bacteria. To this purpose, metabolomics analyses were carried out by LC-TOF-MS. 

The PCA analyses of the metabolomics data clearly distinguish samples at the end of alcoholic fermentation from samples after malolactic fermentation and samples from co-inoculation. These results confirmed the impact of bacteria on wine metabolome but also underlined the fact that co-inoculation of bacteria with yeast in must does not result in the same wine than sequential inoculation, from a metabolite point of view. This result clearly indicates that both matrix (must or wine) and yeast bacteria interactions are responsible for the observed differences. A focus on the comparison of wine before and after malolactic fermentation conducted by the lactic acid bacteria VP41 revealed a clear cut difference between the wines as represented by PLS-DA. These results confirmed the drastic changes of the wines due to malolactic fermentation. Some of the compounds catabolised or synthesized by the bacteria during MLF allows to identify specific metabolic pathway involved during MLF such as for example glycosyl hydrolases, which convert flavonoid glycosides to the corresponding aglycones, and esterase, degrading methyl gallate, tannins, or phenolic acid ester.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Liu Youzhong (1,2), Gougeon Régis (3), Bou-Déléris Magali (4), Krieger-Weber Sybille (4), Schmitt-Kopplin Philippe (5,6),

Presenting author

Alexandre Hervé3

1-Department of Mathematics and Computer Science, Advanced Database Research and Modelling (ADReM), University of Antwerp, Antwerp, Belgium
2-Biomedical Informatics Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
3-UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France
4-Lallemand SAS, 19 rue des Briquetiers, Blagnac, France
5-Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
6-Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

Contact the author

Keywords

bacteria, malolactic fermentation, metabolomic, wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Oenological tannins to prevent Botrytis cinerea damage: reduction of laccase activity

Oenological tannins are classified as hydrolysable and condensed tannins. Their use in winemaking is only authorized, to facilitate wine fining. Nevertheless, tannins could also be used to prevent laccase effects.

Hyperspectral imaging for the appraisal of varietal aroma composition along maturation in intact Vitis vinifera L. Tempranillo Blanco berries

The knowledge of the grape aromatic composition during ripening provides very important information for winegrowers, who may carry out different viticultural practices, or determine the harvest date more accurately. However, there are currently no tools that allow this measurement to be carried out in a non-invasive and rapid way. For this reason, the aim of this work was to design a non-invasive methodology, based on hyperspectral imaging to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Among the many compounds in wine, condensed tannins play an important role in the organoleptic properties of the products; they are partly responsible for astringency, bitterness and also contribute to the color. This research work aims to study the oxidation state of these bio-heteropolymers which is an important lock in the analysis of processed products in order to better control their quality. Indeed, their identification remains at present a challenge because of the large heterogeneity of their degrees of polymerization (DP) based on 4 monomers (epicatechin, catechin, epigallocatechin, epicatechin-3-O-gallate) thus multiplying the number of oxidation products.