OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

Abstract

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF). In order to have a clearer picture of the metabolic signature of the bacteria in wine during the MLF, we have analyzed the exometabolome before and after MLF of wine fermented with 6 different yeast strains and 2 different bacteria. To this purpose, metabolomics analyses were carried out by LC-TOF-MS. 

The PCA analyses of the metabolomics data clearly distinguish samples at the end of alcoholic fermentation from samples after malolactic fermentation and samples from co-inoculation. These results confirmed the impact of bacteria on wine metabolome but also underlined the fact that co-inoculation of bacteria with yeast in must does not result in the same wine than sequential inoculation, from a metabolite point of view. This result clearly indicates that both matrix (must or wine) and yeast bacteria interactions are responsible for the observed differences. A focus on the comparison of wine before and after malolactic fermentation conducted by the lactic acid bacteria VP41 revealed a clear cut difference between the wines as represented by PLS-DA. These results confirmed the drastic changes of the wines due to malolactic fermentation. Some of the compounds catabolised or synthesized by the bacteria during MLF allows to identify specific metabolic pathway involved during MLF such as for example glycosyl hydrolases, which convert flavonoid glycosides to the corresponding aglycones, and esterase, degrading methyl gallate, tannins, or phenolic acid ester.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Liu Youzhong (1,2), Gougeon Régis (3), Bou-Déléris Magali (4), Krieger-Weber Sybille (4), Schmitt-Kopplin Philippe (5,6),

Presenting author

Alexandre Hervé3

1-Department of Mathematics and Computer Science, Advanced Database Research and Modelling (ADReM), University of Antwerp, Antwerp, Belgium
2-Biomedical Informatics Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
3-UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Rue Claude Ladrey, BP 27877, 21078 Dijon Cedex, France
4-Lallemand SAS, 19 rue des Briquetiers, Blagnac, France
5-Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
6-Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

Contact the author

Keywords

bacteria, malolactic fermentation, metabolomic, wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Water status modelling: impact of local rainfall variability in Burgundy (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

Redwine project: increasing microalgae biomass feedstock by valorising wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern.

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).