terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Abstract

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

In order to assess smoke impact, a selection of volatile and glycosylated phenols is proposed, mainly based on research from Australia (2, 3). It includes the volatile phenols guaiacol, 4-methylguaiacol, ortho-, meta- and para- cresol, phenol, syringol, and 4-methylsyringol, as well as their glycosylated forms guaiacol rutinoside, 4-methylguaiacol rutinoside, cresol rutinoside, phenol rutinoside, syringol gen-tiobioside, and 4-methylsyringol gentiobioside. The accurate and reproducible measurement of these compounds is now possible, due to the commercial availability of standards and isotopic analogues.

In this study, we investigated the stability of these markers in bottled wines from smoke-exposed grapes, during a two-year timeframe. Wines monitored were a Chenin Blanc and a Chardonnay (whites), a Grenache (rosé), two Cabernet Sauvignons, a Zinfandel and a Grenache (reds).

No significant increases in guaiacol were observed in the white and rosé wines. Slight increases (2-3 μg/L) were observed in red wines, with the exception of the Pinot Noir (9 μg/L). Non-significant to slight increases were observed for phenol, except in the Zinfandel (10 μg/L). Large increases were observed for syringol in red wines only, especially in Cabernet Sauvignons (up to 60 μg/L). No significant increases were observed for the other volatile phenols measured.

All measured glycosylated markers were stable, in all wines. Therefore, increases in volatile phenols, when they happened, were not explained by the hydrolysis of corresponding glycosylated forms measured.

The observed increases in guaiacol and syringol, as well as the stability of the glycosylated forms measured, are consistent with results from a previous study (4). The stability of glycosylated markers makes them relevant in identifying wines from smoke exposed grapes, possibly for many years after bottling. A limitation is that some smoke impacted wines might show normal or even non-detectable levels of these glycosylated markers.

 

1. Christine M. Mayr, Mango Parker, Gayle A. Baldock, Cory A. Black, Kevin H. Pardon, Patricia O. Williamson, Markus J. Herderich, and I. Leigh Francis.  2014. Determination of the Importance of In-Mouth Release of Volatile Phenol Glycoconjugates to the Flavor of Smoke-Tainted Wines. Journal of Agricultural and Food Chemistry  62 (11), 2327-2336
2. Hayasaka, Y., Parker, M., Baldock, G.A., Pardon, K.H., Black, C.A., Jeffery, D.W. and Herderich, M.J. (2013) Assessing the impact of smoke exposure in grapes: development and validation of a HPLC-MS/MS method for the quantitative analysis of smoke derived phenolic glycosides in grapes and wine. Journal of Agricultural and Food Chemistry 61, 25–33.
3. Krstic, M.P., Johnson, D.L. and Herderich, M.J. (2015) Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Australian Journal of Grape and Wine Research 21, 537–553.
4. Renata Ristic R., Lieke van der Hulst L., Dimitra L. Capone, and Kerry L. Wilkinson. Impact of Bottle Aging on Smoke-Tainted Wines from Different Grape Cultivars. 2017.
5. Journal of Agricultural and Food Chemistry 65 (20), 4146-4152

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Eric Hervé¹, Darren Gullick¹ , Azeem Hasan¹, Anindya Pradhan¹, Gordon Burns¹

1. ETS Laboratories, 899 Adams St. Suite A, St. Helena, CA 94574, USA

Contact the author*

Keywords

smoke impact, volatile phenols, glycosylated phenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.