terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Abstract

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

In order to assess smoke impact, a selection of volatile and glycosylated phenols is proposed, mainly based on research from Australia (2, 3). It includes the volatile phenols guaiacol, 4-methylguaiacol, ortho-, meta- and para- cresol, phenol, syringol, and 4-methylsyringol, as well as their glycosylated forms guaiacol rutinoside, 4-methylguaiacol rutinoside, cresol rutinoside, phenol rutinoside, syringol gen-tiobioside, and 4-methylsyringol gentiobioside. The accurate and reproducible measurement of these compounds is now possible, due to the commercial availability of standards and isotopic analogues.

In this study, we investigated the stability of these markers in bottled wines from smoke-exposed grapes, during a two-year timeframe. Wines monitored were a Chenin Blanc and a Chardonnay (whites), a Grenache (rosé), two Cabernet Sauvignons, a Zinfandel and a Grenache (reds).

No significant increases in guaiacol were observed in the white and rosé wines. Slight increases (2-3 μg/L) were observed in red wines, with the exception of the Pinot Noir (9 μg/L). Non-significant to slight increases were observed for phenol, except in the Zinfandel (10 μg/L). Large increases were observed for syringol in red wines only, especially in Cabernet Sauvignons (up to 60 μg/L). No significant increases were observed for the other volatile phenols measured.

All measured glycosylated markers were stable, in all wines. Therefore, increases in volatile phenols, when they happened, were not explained by the hydrolysis of corresponding glycosylated forms measured.

The observed increases in guaiacol and syringol, as well as the stability of the glycosylated forms measured, are consistent with results from a previous study (4). The stability of glycosylated markers makes them relevant in identifying wines from smoke exposed grapes, possibly for many years after bottling. A limitation is that some smoke impacted wines might show normal or even non-detectable levels of these glycosylated markers.

 

1. Christine M. Mayr, Mango Parker, Gayle A. Baldock, Cory A. Black, Kevin H. Pardon, Patricia O. Williamson, Markus J. Herderich, and I. Leigh Francis.  2014. Determination of the Importance of In-Mouth Release of Volatile Phenol Glycoconjugates to the Flavor of Smoke-Tainted Wines. Journal of Agricultural and Food Chemistry  62 (11), 2327-2336
2. Hayasaka, Y., Parker, M., Baldock, G.A., Pardon, K.H., Black, C.A., Jeffery, D.W. and Herderich, M.J. (2013) Assessing the impact of smoke exposure in grapes: development and validation of a HPLC-MS/MS method for the quantitative analysis of smoke derived phenolic glycosides in grapes and wine. Journal of Agricultural and Food Chemistry 61, 25–33.
3. Krstic, M.P., Johnson, D.L. and Herderich, M.J. (2015) Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Australian Journal of Grape and Wine Research 21, 537–553.
4. Renata Ristic R., Lieke van der Hulst L., Dimitra L. Capone, and Kerry L. Wilkinson. Impact of Bottle Aging on Smoke-Tainted Wines from Different Grape Cultivars. 2017.
5. Journal of Agricultural and Food Chemistry 65 (20), 4146-4152

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Eric Hervé¹, Darren Gullick¹ , Azeem Hasan¹, Anindya Pradhan¹, Gordon Burns¹

1. ETS Laboratories, 899 Adams St. Suite A, St. Helena, CA 94574, USA

Contact the author*

Keywords

smoke impact, volatile phenols, glycosylated phenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.