terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Abstract

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

In order to assess smoke impact, a selection of volatile and glycosylated phenols is proposed, mainly based on research from Australia (2, 3). It includes the volatile phenols guaiacol, 4-methylguaiacol, ortho-, meta- and para- cresol, phenol, syringol, and 4-methylsyringol, as well as their glycosylated forms guaiacol rutinoside, 4-methylguaiacol rutinoside, cresol rutinoside, phenol rutinoside, syringol gen-tiobioside, and 4-methylsyringol gentiobioside. The accurate and reproducible measurement of these compounds is now possible, due to the commercial availability of standards and isotopic analogues.

In this study, we investigated the stability of these markers in bottled wines from smoke-exposed grapes, during a two-year timeframe. Wines monitored were a Chenin Blanc and a Chardonnay (whites), a Grenache (rosé), two Cabernet Sauvignons, a Zinfandel and a Grenache (reds).

No significant increases in guaiacol were observed in the white and rosé wines. Slight increases (2-3 μg/L) were observed in red wines, with the exception of the Pinot Noir (9 μg/L). Non-significant to slight increases were observed for phenol, except in the Zinfandel (10 μg/L). Large increases were observed for syringol in red wines only, especially in Cabernet Sauvignons (up to 60 μg/L). No significant increases were observed for the other volatile phenols measured.

All measured glycosylated markers were stable, in all wines. Therefore, increases in volatile phenols, when they happened, were not explained by the hydrolysis of corresponding glycosylated forms measured.

The observed increases in guaiacol and syringol, as well as the stability of the glycosylated forms measured, are consistent with results from a previous study (4). The stability of glycosylated markers makes them relevant in identifying wines from smoke exposed grapes, possibly for many years after bottling. A limitation is that some smoke impacted wines might show normal or even non-detectable levels of these glycosylated markers.

 

1. Christine M. Mayr, Mango Parker, Gayle A. Baldock, Cory A. Black, Kevin H. Pardon, Patricia O. Williamson, Markus J. Herderich, and I. Leigh Francis.  2014. Determination of the Importance of In-Mouth Release of Volatile Phenol Glycoconjugates to the Flavor of Smoke-Tainted Wines. Journal of Agricultural and Food Chemistry  62 (11), 2327-2336
2. Hayasaka, Y., Parker, M., Baldock, G.A., Pardon, K.H., Black, C.A., Jeffery, D.W. and Herderich, M.J. (2013) Assessing the impact of smoke exposure in grapes: development and validation of a HPLC-MS/MS method for the quantitative analysis of smoke derived phenolic glycosides in grapes and wine. Journal of Agricultural and Food Chemistry 61, 25–33.
3. Krstic, M.P., Johnson, D.L. and Herderich, M.J. (2015) Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Australian Journal of Grape and Wine Research 21, 537–553.
4. Renata Ristic R., Lieke van der Hulst L., Dimitra L. Capone, and Kerry L. Wilkinson. Impact of Bottle Aging on Smoke-Tainted Wines from Different Grape Cultivars. 2017.
5. Journal of Agricultural and Food Chemistry 65 (20), 4146-4152

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Eric Hervé¹, Darren Gullick¹ , Azeem Hasan¹, Anindya Pradhan¹, Gordon Burns¹

1. ETS Laboratories, 899 Adams St. Suite A, St. Helena, CA 94574, USA

Contact the author*

Keywords

smoke impact, volatile phenols, glycosylated phenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.