terclim by ICS banner
IVES 9 IVES Conference Series 9 UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

Abstract

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine composition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. We examined three berry maturity stages from the 2022 vintage: mid-veraison (MV), mid-maturity (MM), 7 days before maturity (M-7), at maturity (M), and 10 days post-maturity (M+10). Classical composition parameters were monitored during maturation. Fine volatile compounds, including lactones, furanones, norisoprenoids, and carbonyls as ripening and over-ripening markers, were quantified in grapes and wines using SPME-GC-MS, while thiols were analyzed in wines by SPE-GC-MS/MS. For example, according to the maturity stages, a significant increase in alcohol content was observed, which varied depending on the grape genotype. The highest concentrations were found in Petit Verdot (13.78 g/L in M-7), Cabernet Sauvignon, Merlot, and Petit Verdot (15.21, 15.30, and 15.75 g/L in M) and Merlot (16.68 g/L in M+10). These values were directly related to the higher sugar concentrations found in their must during the evaluated periods. Total acidity and pH levels vary among cultivars and are also influenced by different maturation stages. Some cultivars show more significant changes over time, while others display more modest fluctuations. As expected, the pH values and total acidity in wines from different cultivars were inversely related. Concerning the analyzed volatile compounds, surprisingly, Petit Verdot exhibited the highest concentrations of γ-nonalactone, followed by Cabernet Sauvignon and Cot, at all maturity stages including M-7 (6.39, 3.90, 3.61 µg/L), M (20.98, 8.98, 6.05 µg/L), and M+10 (13.93, 12.40, 8.48 µg/L), respectively. Overall, this study offers a new method to assess varieties’ sensitivity to overripening and vital insights into the impact of berry maturity stage and cultivar on wine physicochemical traits and volatile compound profiles. These findings can be a foundation for future research aiming to predict or model wine’s chemical and sensory properties.

 

1. Wang, Lina, et al. “Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exoge-nous ABA application.” Food Research International 160 (2022): 111478.
2. Pons, Alexandre, et al. “Impact of the Closure Oxygen Transfer Rate on Volatile Compound Composition and Oxidation Aroma Intensity of Merlot and Cabernet Sauvignon Blend: A 10 Year Study.” Journal of Agricultural and Food Chemistry (2022).
3. Van Leeuwen, Cornelis, et al. “How terroir shapes aromatic typicity in grapes and wines (Part I): Sourced from the research article:” Recent advancements in understanding the terroir effect on aromas in grapes and wines”(OENO One, 2020). Original language of the article: English.” IVES Technical Reviews, vine and wine (2023).
4. Darriet, Philippe, et al. “Aroma and aroma precursors in grape berry.” The biochemistry of the grape berry (2012): 111-136.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Santos¹, Sabine Guilhaume¹, Cécile Thibon², Alexandre Pons²

1. UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, Villenave d’Ornon, France.
2. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author*

Keywords

Volatiles compounds, SPME-GC-MS, Composition parameters, Grape maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.