terclim by ICS banner
IVES 9 IVES Conference Series 9 UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

Abstract

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine composition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. We examined three berry maturity stages from the 2022 vintage: mid-veraison (MV), mid-maturity (MM), 7 days before maturity (M-7), at maturity (M), and 10 days post-maturity (M+10). Classical composition parameters were monitored during maturation. Fine volatile compounds, including lactones, furanones, norisoprenoids, and carbonyls as ripening and over-ripening markers, were quantified in grapes and wines using SPME-GC-MS, while thiols were analyzed in wines by SPE-GC-MS/MS. For example, according to the maturity stages, a significant increase in alcohol content was observed, which varied depending on the grape genotype. The highest concentrations were found in Petit Verdot (13.78 g/L in M-7), Cabernet Sauvignon, Merlot, and Petit Verdot (15.21, 15.30, and 15.75 g/L in M) and Merlot (16.68 g/L in M+10). These values were directly related to the higher sugar concentrations found in their must during the evaluated periods. Total acidity and pH levels vary among cultivars and are also influenced by different maturation stages. Some cultivars show more significant changes over time, while others display more modest fluctuations. As expected, the pH values and total acidity in wines from different cultivars were inversely related. Concerning the analyzed volatile compounds, surprisingly, Petit Verdot exhibited the highest concentrations of γ-nonalactone, followed by Cabernet Sauvignon and Cot, at all maturity stages including M-7 (6.39, 3.90, 3.61 µg/L), M (20.98, 8.98, 6.05 µg/L), and M+10 (13.93, 12.40, 8.48 µg/L), respectively. Overall, this study offers a new method to assess varieties’ sensitivity to overripening and vital insights into the impact of berry maturity stage and cultivar on wine physicochemical traits and volatile compound profiles. These findings can be a foundation for future research aiming to predict or model wine’s chemical and sensory properties.

 

1. Wang, Lina, et al. “Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exoge-nous ABA application.” Food Research International 160 (2022): 111478.
2. Pons, Alexandre, et al. “Impact of the Closure Oxygen Transfer Rate on Volatile Compound Composition and Oxidation Aroma Intensity of Merlot and Cabernet Sauvignon Blend: A 10 Year Study.” Journal of Agricultural and Food Chemistry (2022).
3. Van Leeuwen, Cornelis, et al. “How terroir shapes aromatic typicity in grapes and wines (Part I): Sourced from the research article:” Recent advancements in understanding the terroir effect on aromas in grapes and wines”(OENO One, 2020). Original language of the article: English.” IVES Technical Reviews, vine and wine (2023).
4. Darriet, Philippe, et al. “Aroma and aroma precursors in grape berry.” The biochemistry of the grape berry (2012): 111-136.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Santos¹, Sabine Guilhaume¹, Cécile Thibon², Alexandre Pons²

1. UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, Villenave d’Ornon, France.
2. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author*

Keywords

Volatiles compounds, SPME-GC-MS, Composition parameters, Grape maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.