terclim by ICS banner
IVES 9 IVES Conference Series 9 UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

Abstract

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine composition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. We examined three berry maturity stages from the 2022 vintage: mid-veraison (MV), mid-maturity (MM), 7 days before maturity (M-7), at maturity (M), and 10 days post-maturity (M+10). Classical composition parameters were monitored during maturation. Fine volatile compounds, including lactones, furanones, norisoprenoids, and carbonyls as ripening and over-ripening markers, were quantified in grapes and wines using SPME-GC-MS, while thiols were analyzed in wines by SPE-GC-MS/MS. For example, according to the maturity stages, a significant increase in alcohol content was observed, which varied depending on the grape genotype. The highest concentrations were found in Petit Verdot (13.78 g/L in M-7), Cabernet Sauvignon, Merlot, and Petit Verdot (15.21, 15.30, and 15.75 g/L in M) and Merlot (16.68 g/L in M+10). These values were directly related to the higher sugar concentrations found in their must during the evaluated periods. Total acidity and pH levels vary among cultivars and are also influenced by different maturation stages. Some cultivars show more significant changes over time, while others display more modest fluctuations. As expected, the pH values and total acidity in wines from different cultivars were inversely related. Concerning the analyzed volatile compounds, surprisingly, Petit Verdot exhibited the highest concentrations of γ-nonalactone, followed by Cabernet Sauvignon and Cot, at all maturity stages including M-7 (6.39, 3.90, 3.61 µg/L), M (20.98, 8.98, 6.05 µg/L), and M+10 (13.93, 12.40, 8.48 µg/L), respectively. Overall, this study offers a new method to assess varieties’ sensitivity to overripening and vital insights into the impact of berry maturity stage and cultivar on wine physicochemical traits and volatile compound profiles. These findings can be a foundation for future research aiming to predict or model wine’s chemical and sensory properties.

 

1. Wang, Lina, et al. “Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exoge-nous ABA application.” Food Research International 160 (2022): 111478.
2. Pons, Alexandre, et al. “Impact of the Closure Oxygen Transfer Rate on Volatile Compound Composition and Oxidation Aroma Intensity of Merlot and Cabernet Sauvignon Blend: A 10 Year Study.” Journal of Agricultural and Food Chemistry (2022).
3. Van Leeuwen, Cornelis, et al. “How terroir shapes aromatic typicity in grapes and wines (Part I): Sourced from the research article:” Recent advancements in understanding the terroir effect on aromas in grapes and wines”(OENO One, 2020). Original language of the article: English.” IVES Technical Reviews, vine and wine (2023).
4. Darriet, Philippe, et al. “Aroma and aroma precursors in grape berry.” The biochemistry of the grape berry (2012): 111-136.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Santos¹, Sabine Guilhaume¹, Cécile Thibon², Alexandre Pons²

1. UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, Villenave d’Ornon, France.
2. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author*

Keywords

Volatiles compounds, SPME-GC-MS, Composition parameters, Grape maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).