terclim by ICS banner
IVES 9 IVES Conference Series 9 UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

Abstract

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine composition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional. We examined three berry maturity stages from the 2022 vintage: mid-veraison (MV), mid-maturity (MM), 7 days before maturity (M-7), at maturity (M), and 10 days post-maturity (M+10). Classical composition parameters were monitored during maturation. Fine volatile compounds, including lactones, furanones, norisoprenoids, and carbonyls as ripening and over-ripening markers, were quantified in grapes and wines using SPME-GC-MS, while thiols were analyzed in wines by SPE-GC-MS/MS. For example, according to the maturity stages, a significant increase in alcohol content was observed, which varied depending on the grape genotype. The highest concentrations were found in Petit Verdot (13.78 g/L in M-7), Cabernet Sauvignon, Merlot, and Petit Verdot (15.21, 15.30, and 15.75 g/L in M) and Merlot (16.68 g/L in M+10). These values were directly related to the higher sugar concentrations found in their must during the evaluated periods. Total acidity and pH levels vary among cultivars and are also influenced by different maturation stages. Some cultivars show more significant changes over time, while others display more modest fluctuations. As expected, the pH values and total acidity in wines from different cultivars were inversely related. Concerning the analyzed volatile compounds, surprisingly, Petit Verdot exhibited the highest concentrations of γ-nonalactone, followed by Cabernet Sauvignon and Cot, at all maturity stages including M-7 (6.39, 3.90, 3.61 µg/L), M (20.98, 8.98, 6.05 µg/L), and M+10 (13.93, 12.40, 8.48 µg/L), respectively. Overall, this study offers a new method to assess varieties’ sensitivity to overripening and vital insights into the impact of berry maturity stage and cultivar on wine physicochemical traits and volatile compound profiles. These findings can be a foundation for future research aiming to predict or model wine’s chemical and sensory properties.

 

1. Wang, Lina, et al. “Regulation of anthocyanin and sugar accumulation in grape berry through carbon limitation and exoge-nous ABA application.” Food Research International 160 (2022): 111478.
2. Pons, Alexandre, et al. “Impact of the Closure Oxygen Transfer Rate on Volatile Compound Composition and Oxidation Aroma Intensity of Merlot and Cabernet Sauvignon Blend: A 10 Year Study.” Journal of Agricultural and Food Chemistry (2022).
3. Van Leeuwen, Cornelis, et al. “How terroir shapes aromatic typicity in grapes and wines (Part I): Sourced from the research article:” Recent advancements in understanding the terroir effect on aromas in grapes and wines”(OENO One, 2020). Original language of the article: English.” IVES Technical Reviews, vine and wine (2023).
4. Darriet, Philippe, et al. “Aroma and aroma precursors in grape berry.” The biochemistry of the grape berry (2012): 111-136.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Santos¹, Sabine Guilhaume¹, Cécile Thibon², Alexandre Pons²

1. UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, Villenave d’Ornon, France.
2. Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author*

Keywords

Volatiles compounds, SPME-GC-MS, Composition parameters, Grape maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.