terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Abstract

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

Eight commercial oak tannins were characterized by a combination of analytical approaches, Polyphe-nols were analyzed using the official OIV method, UV spectrophotometry, UPLC-UV-MS analysis be-fore and after acidic methanolysis, and HPLC-SEC-UV. Neutral sugars and polyols were determined as alditol acetates by GC-FID analysis, before and after hydrolysis. Protein content was estimated by the Kjeldahl method. Finally, samples were compared by a non-targeted metabolomic approach based on UHPLC−HRMS/MS.

Gravimetric analysis, absorbance values at 280 nm, and the quantities of ellagic acid released by methanolysis revealed some differences between samples, indicating variations in their tannin composition. This was confirmed by HPLC-SEC-UV analysis evidencing differences in tannin size distribution, particularly in larger polymer content.

All samples contained significant quantities of sugars, and in particular xylose, mostly found in the linked form, and of quercitol, a polyol marker of oak origin. These compounds contributed to up to 25% of the whole extract composition, the proportions of free and combined sugars and polyols also showing large variations between tannins. The protein content was very low, generally representing less than 1% of the mass. Non targeted UPLC-HRMS analysis detected major ellagitannins such as vescalagin, castalagin, and ro-burins A-E, but also a large number of derivatives as well as other molecules such as lignans and quercotriterponosides, and highlighted large differences between samples. Tannin extracts also contained aldehydes (HMF, furfural, syringaldehyde, sinapaldehyde, vanillin) in variable quantities.

This work demonstrates the variability in the composition of commercial oak tannin extracts, likely to impact their properties, and emphasizes the need for detailed multi-method characterization in the frame of quality control and selection of tannins for specific applications.

 

1. Simón, B. F. de; Cadahía, E.; Conde, E.; García-Vallejo, M. C. Ellagitannins in Woods of Spanish, French and American Oaks. 1999, 53 (2), 147–150. https://doi.org/doi:10.1515/HF.1999.024.
2. Moutounet, M.; Souquet, J.-M.; MEUDEC, E.; Leaute, B.; DELBOS, C.; Doco, T. Analyse de La Composition de Tanins Oenolo-giques. Rev. Fr. Oenologie 2004, No. 208, 22–27.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Hélène Hallea,² , Kevin Pascotto³ , Aude Watrelot1,2,4, Aurélie Roland1,2, Emmanuelle Meudec1,2, Pascale Williams 1, Stéphanie Car-rillo 1, Bertand Robillard 3, Nicolas Sommerer 1,2, Céline Poncet-Legrand 1, Véronique Cheynier 1,2

1. Univ. Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France
2. INRAE, PROBE research infrastructure, PFP polyphenols analysis facility, 34070 Montpellier, France
3. Institut Œnologique de Champagne, Epernay, France
4. Iowa State University, Department of Food Science and Human Nutrition, Ames, USA

Contact the author*

Keywords

Oak extract, Ellagitanins, oses and polyols, HRMS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).