terclim by ICS banner
IVES 9 IVES Conference Series 9 CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Abstract

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

Eight commercial oak tannins were characterized by a combination of analytical approaches, Polyphe-nols were analyzed using the official OIV method, UV spectrophotometry, UPLC-UV-MS analysis be-fore and after acidic methanolysis, and HPLC-SEC-UV. Neutral sugars and polyols were determined as alditol acetates by GC-FID analysis, before and after hydrolysis. Protein content was estimated by the Kjeldahl method. Finally, samples were compared by a non-targeted metabolomic approach based on UHPLC−HRMS/MS.

Gravimetric analysis, absorbance values at 280 nm, and the quantities of ellagic acid released by methanolysis revealed some differences between samples, indicating variations in their tannin composition. This was confirmed by HPLC-SEC-UV analysis evidencing differences in tannin size distribution, particularly in larger polymer content.

All samples contained significant quantities of sugars, and in particular xylose, mostly found in the linked form, and of quercitol, a polyol marker of oak origin. These compounds contributed to up to 25% of the whole extract composition, the proportions of free and combined sugars and polyols also showing large variations between tannins. The protein content was very low, generally representing less than 1% of the mass. Non targeted UPLC-HRMS analysis detected major ellagitannins such as vescalagin, castalagin, and ro-burins A-E, but also a large number of derivatives as well as other molecules such as lignans and quercotriterponosides, and highlighted large differences between samples. Tannin extracts also contained aldehydes (HMF, furfural, syringaldehyde, sinapaldehyde, vanillin) in variable quantities.

This work demonstrates the variability in the composition of commercial oak tannin extracts, likely to impact their properties, and emphasizes the need for detailed multi-method characterization in the frame of quality control and selection of tannins for specific applications.

 

1. Simón, B. F. de; Cadahía, E.; Conde, E.; García-Vallejo, M. C. Ellagitannins in Woods of Spanish, French and American Oaks. 1999, 53 (2), 147–150. https://doi.org/doi:10.1515/HF.1999.024.
2. Moutounet, M.; Souquet, J.-M.; MEUDEC, E.; Leaute, B.; DELBOS, C.; Doco, T. Analyse de La Composition de Tanins Oenolo-giques. Rev. Fr. Oenologie 2004, No. 208, 22–27.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Hélène Hallea,² , Kevin Pascotto³ , Aude Watrelot1,2,4, Aurélie Roland1,2, Emmanuelle Meudec1,2, Pascale Williams 1, Stéphanie Car-rillo 1, Bertand Robillard 3, Nicolas Sommerer 1,2, Céline Poncet-Legrand 1, Véronique Cheynier 1,2

1. Univ. Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France
2. INRAE, PROBE research infrastructure, PFP polyphenols analysis facility, 34070 Montpellier, France
3. Institut Œnologique de Champagne, Epernay, France
4. Iowa State University, Department of Food Science and Human Nutrition, Ames, USA

Contact the author*

Keywords

Oak extract, Ellagitanins, oses and polyols, HRMS

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.