terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

Abstract

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines. During this research the prospect of foliar application of bio stimulants to improve the aromatic and polyphenolic potential of the grapes was investigated in two consecutive years, characterized by hot and dry summers. Two different products, prepared with specific fractions of inactivated yeasts, were compared, and applied in different points during veraison with two- or three-time application protocol. The experiment involved two cultivars cultivated in Tuscany, a white (Vermentino) and a red one (Sangiovese). Quali-quantitative determination of the aromatic composition of the grapes was carried out using GC-MS, whereas polyphenols in skins and seeds were analyzed by spectrophotometry and HPLC methods. The bio stimulants did not affect the vine yield, but higher berry weight and reduced sugar contents were noted at harvest in the grapes from treated with respect to the control vines. All treatments enhanced polyphenolic potential in berry skins of red grapes, whereas modifications on anthocyanins percentages and reduction of flavonols were also observed, suggesting a protective effect of the treatments against solar radiation stress. Moreover, grapes from treated vines differ significantly for the lower content of polyphenolic compounds in their seeds. As regards aroma precursors, three-time application triggered significantly higher contents for almost all chemical classes of aromatic precursors for Vermentino whereas all treatments enhanced the accumulation of terpenoids and benzenoids in the berries of San-giovese. Bio stimulants thus, improved the qualitative parameters of the grapes, but their effect was different based on the frequency and the timing of the application, the chemical class of the compounds and the cultivar examined. Further future investigation is necessary to optimize bio stimulant application to contrast stress conditions and improve grape quality.

 

1. Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14.
2. Cataldo, E.; Fucile, M.; Mattii, G.B. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. Plants 2022, 11, 162. https://doi.org/10.3390/plants11020162
3. Asproudi, A., Petrozziello, M., Cavalletto, S., & Guidoni, S. (2016). Grape aroma precursors in cv. Nebbiolo as affected by vine microclimate. Food chemistry, 211, 947-956. https://doi.org/10.1016/j.foodchem.2016.05.070
4. Asproudi, A., Ferrandino, A., Bonello, F., Vaudano, E., Pollon, M., & Petrozziello, M. (2018). Key norisoprenoid compounds in wines from early-harvested grapes in view of climate change. Food chemistry, 268, 143-152. https://doi.org/10.1016/j.foodchem.2018.06.069
5. D’Arcangelo, M.E.M.; Valentini, P.; Puccioni, S.; (2018). Evaluation of new products against grapevine Downy mildew. Atti Giornate Fitopatologiche, 2018, 2, 503-512.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Andriani Asproudi¹, Maurizio Petrozziello¹, Vasiliki Ragkousi¹, Mauro Eugenio Maria D’Arcangelo², Sergio Puccioni², Federica Bonello¹

1. CREA-VE: Council for Agricultural Research and Economics- Research centre for Viticulture and Enology
2. Via P. Micca 35, 14100 Asti, Italy
3. 2.CREA-VE: Council for Agricultural Research and Economics- Research centre for Viticulture and Enology
4. Viale Santa Margherita, 80 – 52100 Arezzo, Italy

Contact the author*

Keywords

aroma precursors, polyphenols, Vermentino, Sangiovese

Tags

IVES Conference Series | OENO Macrowine | oeno macrowine 2023

Citation

Related articles…

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.