terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

Abstract

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3]. To assess other additives and co-adjuvants suitable for pinking removal, this study aimed to identify the wine treatment(s) most effective for achieving this purpose.

A white wine showing the pinking fault was added with several additives and co-adjuvants, including active charcoals (bleaching and deodorizing), bentonites, gelatine, PVPP, PVI/PVP, chitosan, potassium caseinate, kaolin, zeolite, silica, calcium phytate, oenological tannins (oak and grape skin), glutathione, ascorbic acid (without/with sulfur dioxide) yeast derivatives for a total of 23 removal assays. The wines were stored up to 26 days and their susceptibility to pinking was carried out at 4 sampling points (day 1, 5, 15 and 26) through the hydrogen peroxide test. The wine was considered susceptible to pinking (SP) when an increase of 5 mAU was observed at 500 nm [4]. Moreover, the pink color index at 500 nm (wit-hout hydrogen peroxide) was determined.

No change in the pink color index was found with the exception of potassium caseinate. Some of the tested additives and co-adjuvants were not effective in limiting SP, including active charcoals, bentonite, gelatine, kaolin, zeolite, silica, grape skin tannin, glutathione and ascorbic acid. For some of them, an increased SP was evidenced (e.g. kaolin, zeolite, grape skin tannin). The treatment with PVI/PVP strongly decreased the pinking susceptibility already after 1 day. In this condition, the wine was not SP anymore at day 15. For this sampling time, three of the yeast derivatives tested, chitosan, PVPP, potassium caseinate and oak tannins limited the pinking susceptibility. The addition of PVPP, the mainly used co-adjuvant, did not result the most relevant one to solve such significant color change. Further study will investigate the selected additives and co-adjuvants in other pink wines as well as in combination in order to identify the most promising treatment for the pinking removal.

 

1. Andrea-Silva, J., Cosme, F., Ribeiro, L. F., Moreira, A. S. P., Malheiro, A. C., Coimbra, M. A., Domingues, M. R. M., & Nunes, F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agriculture and Food Chemistry, 62, 5651–5659. https://doi.org/10.1021/jf500825h
2. Nel, A.P., du Toit, W.J., & van Jaarsveld, F.P. (2021). Sensory evaluation of pinked Sauvignon blanc wines. South African Journal of Enology and Viticulture, 42, 175-183. http://dx.doi.org/10.21548/42-2-4316
3. Simpson R., Miller G., Orr L. (1982). Oxidative pinking of white wines: recent observations. Food technology in Australia, 34, 
44- 47.
4. Simpson R.F. (1977). Oxidative pinking in white wines. Vitis, 16, 286-286.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Daniela Fracassetti1,*, Francesca Domenighini¹, Alessio Altomare¹, Maria Manara², Antonio Tirelli¹

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2. Research and Developments, Dal Cin S.p.a., Via I Maggio 67, 20863 Concorezzo, Italy 

Contact the author*

Keywords

Wine treatments, PVI/PVP, Chitosan, Yeast derivatives

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.