terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

Abstract

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3]. To assess other additives and co-adjuvants suitable for pinking removal, this study aimed to identify the wine treatment(s) most effective for achieving this purpose.

A white wine showing the pinking fault was added with several additives and co-adjuvants, including active charcoals (bleaching and deodorizing), bentonites, gelatine, PVPP, PVI/PVP, chitosan, potassium caseinate, kaolin, zeolite, silica, calcium phytate, oenological tannins (oak and grape skin), glutathione, ascorbic acid (without/with sulfur dioxide) yeast derivatives for a total of 23 removal assays. The wines were stored up to 26 days and their susceptibility to pinking was carried out at 4 sampling points (day 1, 5, 15 and 26) through the hydrogen peroxide test. The wine was considered susceptible to pinking (SP) when an increase of 5 mAU was observed at 500 nm [4]. Moreover, the pink color index at 500 nm (wit-hout hydrogen peroxide) was determined.

No change in the pink color index was found with the exception of potassium caseinate. Some of the tested additives and co-adjuvants were not effective in limiting SP, including active charcoals, bentonite, gelatine, kaolin, zeolite, silica, grape skin tannin, glutathione and ascorbic acid. For some of them, an increased SP was evidenced (e.g. kaolin, zeolite, grape skin tannin). The treatment with PVI/PVP strongly decreased the pinking susceptibility already after 1 day. In this condition, the wine was not SP anymore at day 15. For this sampling time, three of the yeast derivatives tested, chitosan, PVPP, potassium caseinate and oak tannins limited the pinking susceptibility. The addition of PVPP, the mainly used co-adjuvant, did not result the most relevant one to solve such significant color change. Further study will investigate the selected additives and co-adjuvants in other pink wines as well as in combination in order to identify the most promising treatment for the pinking removal.

 

1. Andrea-Silva, J., Cosme, F., Ribeiro, L. F., Moreira, A. S. P., Malheiro, A. C., Coimbra, M. A., Domingues, M. R. M., & Nunes, F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agriculture and Food Chemistry, 62, 5651–5659. https://doi.org/10.1021/jf500825h
2. Nel, A.P., du Toit, W.J., & van Jaarsveld, F.P. (2021). Sensory evaluation of pinked Sauvignon blanc wines. South African Journal of Enology and Viticulture, 42, 175-183. http://dx.doi.org/10.21548/42-2-4316
3. Simpson R., Miller G., Orr L. (1982). Oxidative pinking of white wines: recent observations. Food technology in Australia, 34, 
44- 47.
4. Simpson R.F. (1977). Oxidative pinking in white wines. Vitis, 16, 286-286.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Daniela Fracassetti1,*, Francesca Domenighini¹, Alessio Altomare¹, Maria Manara², Antonio Tirelli¹

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2. Research and Developments, Dal Cin S.p.a., Via I Maggio 67, 20863 Concorezzo, Italy 

Contact the author*

Keywords

Wine treatments, PVI/PVP, Chitosan, Yeast derivatives

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.