terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

Abstract

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3]. To assess other additives and co-adjuvants suitable for pinking removal, this study aimed to identify the wine treatment(s) most effective for achieving this purpose.

A white wine showing the pinking fault was added with several additives and co-adjuvants, including active charcoals (bleaching and deodorizing), bentonites, gelatine, PVPP, PVI/PVP, chitosan, potassium caseinate, kaolin, zeolite, silica, calcium phytate, oenological tannins (oak and grape skin), glutathione, ascorbic acid (without/with sulfur dioxide) yeast derivatives for a total of 23 removal assays. The wines were stored up to 26 days and their susceptibility to pinking was carried out at 4 sampling points (day 1, 5, 15 and 26) through the hydrogen peroxide test. The wine was considered susceptible to pinking (SP) when an increase of 5 mAU was observed at 500 nm [4]. Moreover, the pink color index at 500 nm (wit-hout hydrogen peroxide) was determined.

No change in the pink color index was found with the exception of potassium caseinate. Some of the tested additives and co-adjuvants were not effective in limiting SP, including active charcoals, bentonite, gelatine, kaolin, zeolite, silica, grape skin tannin, glutathione and ascorbic acid. For some of them, an increased SP was evidenced (e.g. kaolin, zeolite, grape skin tannin). The treatment with PVI/PVP strongly decreased the pinking susceptibility already after 1 day. In this condition, the wine was not SP anymore at day 15. For this sampling time, three of the yeast derivatives tested, chitosan, PVPP, potassium caseinate and oak tannins limited the pinking susceptibility. The addition of PVPP, the mainly used co-adjuvant, did not result the most relevant one to solve such significant color change. Further study will investigate the selected additives and co-adjuvants in other pink wines as well as in combination in order to identify the most promising treatment for the pinking removal.

 

1. Andrea-Silva, J., Cosme, F., Ribeiro, L. F., Moreira, A. S. P., Malheiro, A. C., Coimbra, M. A., Domingues, M. R. M., & Nunes, F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agriculture and Food Chemistry, 62, 5651–5659. https://doi.org/10.1021/jf500825h
2. Nel, A.P., du Toit, W.J., & van Jaarsveld, F.P. (2021). Sensory evaluation of pinked Sauvignon blanc wines. South African Journal of Enology and Viticulture, 42, 175-183. http://dx.doi.org/10.21548/42-2-4316
3. Simpson R., Miller G., Orr L. (1982). Oxidative pinking of white wines: recent observations. Food technology in Australia, 34, 
44- 47.
4. Simpson R.F. (1977). Oxidative pinking in white wines. Vitis, 16, 286-286.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Daniela Fracassetti1,*, Francesca Domenighini¹, Alessio Altomare¹, Maria Manara², Antonio Tirelli¹

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2. Research and Developments, Dal Cin S.p.a., Via I Maggio 67, 20863 Concorezzo, Italy 

Contact the author*

Keywords

Wine treatments, PVI/PVP, Chitosan, Yeast derivatives

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.