OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Does wine expertise influence semantic categorization of wine odors?

Does wine expertise influence semantic categorization of wine odors?

Abstract

Aromatic characterization is a key issue to enhance wines knowledge. While several studies argue the importance of wine expertise in the ability of performing odor-related sensory tasks, there is still little attention paid to the influence of expertise on the semantic representation of wine odors. Theis study aims at exploring the influence of subject’s expertise on the semantic space of wine’s odor. 

156 subjects were recruited (72 % consumers of wine and 28 % professionals from viticulture sector). Subject’ level of expertise was measured by means of a questionnaire encompassing three criteria: product experience, subjective knowledge and objective knowledge. Four groups of subjects were identified using Rasch model corresponding to four levels of expertise: novices, intermediates, connoisseurs and experts. Thereafter, subjects performed a sorting task on 96 labels of odors and add a title to the groups. To investigate the influence of subject’s expertise on the semantic space of wine’s odor, the four groups’ clusters were compared on several criteria: number and size of odor groups from the sorting task and agreement between the subjects within each cluster. Dissimilarity matrices were also compared to highlight differences between clustering. Finally, to represent the semantic odor space, additive similarity trees were performed on sorting data. 

Results show that number and size of odor groups are likely to be the same between the four clusters (between 26 and 31 groups in average and 3 odors per group in average for the four clusters) and no differences of agreement within each cluster can be highlighted. Additive trees performed on clusters show that most of the branches are the same between the two clusters: fruity, floral, woody, vegetal, spicy, etc. Overall, semantic representation of odors is consensual regardless the level of expertise. But, some differences may be underscored. These latter ones are mostly between expert’s cluster and the three other clusters. 

This work highlights that subjects, professionals or not, have the same structuration of wine odor attributes: they categorize odors according to the odorant source. However, some attributes do not have the same meaning for experts and non-experts which lead to a different categorization. This study is the first step toward a sensory tool for wine characterization aiming at simplifying and standardizing the process of describing wine odors, from generic to more specific attributes.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Léa Koening (1), Cécile Coulon-Leroy (1), Ronan Symoneaux (1), Véronique Cariou (2), Evelyne Vigneau (2)

1) USC 1422 GRAPPE, INRA, Ecole Supérieure d’Agricultures, Univ. Bretagne Loire, SFR 4207 QUASAV, 55 rue Rabelais 49100 Angers, France
2) StatSC, ONIRIS, INRA, 44322 Nantes, France

Contact the author

Keywords

expertise, odor categorization, free sorting, additive tree 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact of climate change on the aroma of red wines: a focus on dried fruit aromas

The volatile composition of grapes (free and bound forms) contributes greatly to the varietal aroma and quality of wines. Several agronomical parameters affect grapes composition and wine quality: maturity level at harvest, water status, and the intensity of sun exposure.

Insight on Lugana flavor with a new LC-MS method for the detection of polyfunctional thiols

The analysis of polyfunctional thiols in wine is challenging due to their low abundance and instability within a complex matrix. However, volatile thiols are highly aroma-active, making their accurate quantification in wine at low concentrations crucial [1].

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.

New tools for a visual analysis of vineyard landscapes?

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person.