terclim by ICS banner
IVES 9 IVES Conference Series 9 S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Abstract

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be de-fined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates. Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments.

The objective of this work was to design a continuous winemaking process using yeasts and bacteria biofilms. In a first part we showed the possibility of inducing the adhesion and biofilm formation by O. œni and S. cerevisiae separately, in low nutriment medium, on different materials already used in the winery environment. Then the biofilm formation was implemented in a 250 ml continuous bioreactor system for both microorganisms. At the end of the biofilm formation step, quantities of attached biomass (CFU counts) were close for all materials and over 5 log (UFC/cm²) for S. cerevisiae, over 6.2 log (UFC/cm²) for O. œni.

For continuous fermentations the inoculated supports were used in a similar 250 ml bioreactor with 3 different modalities: alcoholic fermentation (AF) by S. w in grape must, or Malo-Latic Fermentation (MLF) by O. oeni in wine or, co-fermentation (simultaneous AF and MLF) with both species biofilms feeded with grape must. The progress of the continuous fermentations was analysed. Over periods of 3 to 4 weeks under a continuous regime with a 48h residence time, stable consumption rates of 4 g/l/h for glucose + fructose and 1,8 g/l/24h for L-malic acid were reached in co-fermentations.

This biofilm continuous reactor could be the first step towards perfectly controlled industrial winemaking processes.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marianne Gosset1,2, Yannick Manon², Magali Garcia² Christine Roques¹, Patricia Taillandier1*

1. LGC, Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
2. AB7 Industries, Chemin des Monges, BP9, 31450 Deyme, France

Contact the author*

Keywords

biofilms, continuous fermetnation, S. Cerevisiae, O. oeni

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.