terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

Abstract

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

To achieve this, Tempranillo wines were in contact with their own SEGs and with those from Cabernet Sauvignon variety in two different doses (D1 and D2). SEGs were added at the end of malolactic fermentation and two fixed doses of micro-oxygenation (low, LMOX; and high, HMOX) were considered during the entire period of SEGs contact. At the end of the SEGs-MOX treatments, wines were bottled and stored at temperature and humidity-controlled conditions for 6 months. Wines were characterized in terms of visible spectra, CIELab and individual anthocyanin compounds (HPLC-DAD) to study the color evolution at bottling time and after 3 and 6 months in the bottle.

The results showed that at the end of the treatments, wines micro-oxygenated with the lower dosage (L-MOX) received 6.24 ± 0.87 mg/L per month while those from higher dosage (H-MOX) received 11.91 ± 0.71 mg/L per month. The spectral information showed that in general there was a decrease in the color of SEGs-MOX wines with respect to the control, being more pronounced at bottle time. This reduction was greater when the higher SEGs dose were used, but MOX doses considered did not seem to have a differentiating effect. Specific, only in wines with Cabernet Sauvignon SEGs and D1 the H-MOX produced less color loss; however, for Tempranillo SEGs, the highest dose (D2) combined with L-MOX showed the least color reduction. This reduction in color was observed during the bottle time, being less pronounced after 6 months. The greatest reductions were observed for the red tones (A520) and to a lesser extent for the blue ones (A620). The anthocyanin pormenorized analysis revealed the same behavior, being malvi-din-3-O-glucoside the one that presented the greatest decrease. These first results could indicate that MOX would have to establish it based on SEGs variety and dosage.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rosario Sánchez-Gómez¹, Cristina Cebrián-Tarancón¹, Ana María Martínez-Gil², Rubén Barrio-Galán², Gonzalo

1. Cátedra de Química Agrícola, E.T.S.Ingeniería Agronómica y de Montes y Biotecnología, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain.
2. Departamento de Química Analítica, UVaMOX – Universidad de Valladolid, 34004 Palencia, Spain.

Contact the author*

Keywords

color, fixed micro-oxygenation, SEGs, winemaking techniques implementation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.