terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

Abstract

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

To achieve this, Tempranillo wines were in contact with their own SEGs and with those from Cabernet Sauvignon variety in two different doses (D1 and D2). SEGs were added at the end of malolactic fermentation and two fixed doses of micro-oxygenation (low, LMOX; and high, HMOX) were considered during the entire period of SEGs contact. At the end of the SEGs-MOX treatments, wines were bottled and stored at temperature and humidity-controlled conditions for 6 months. Wines were characterized in terms of visible spectra, CIELab and individual anthocyanin compounds (HPLC-DAD) to study the color evolution at bottling time and after 3 and 6 months in the bottle.

The results showed that at the end of the treatments, wines micro-oxygenated with the lower dosage (L-MOX) received 6.24 ± 0.87 mg/L per month while those from higher dosage (H-MOX) received 11.91 ± 0.71 mg/L per month. The spectral information showed that in general there was a decrease in the color of SEGs-MOX wines with respect to the control, being more pronounced at bottle time. This reduction was greater when the higher SEGs dose were used, but MOX doses considered did not seem to have a differentiating effect. Specific, only in wines with Cabernet Sauvignon SEGs and D1 the H-MOX produced less color loss; however, for Tempranillo SEGs, the highest dose (D2) combined with L-MOX showed the least color reduction. This reduction in color was observed during the bottle time, being less pronounced after 6 months. The greatest reductions were observed for the red tones (A520) and to a lesser extent for the blue ones (A620). The anthocyanin pormenorized analysis revealed the same behavior, being malvi-din-3-O-glucoside the one that presented the greatest decrease. These first results could indicate that MOX would have to establish it based on SEGs variety and dosage.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rosario Sánchez-Gómez¹, Cristina Cebrián-Tarancón¹, Ana María Martínez-Gil², Rubén Barrio-Galán², Gonzalo

1. Cátedra de Química Agrícola, E.T.S.Ingeniería Agronómica y de Montes y Biotecnología, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain.
2. Departamento de Química Analítica, UVaMOX – Universidad de Valladolid, 34004 Palencia, Spain.

Contact the author*

Keywords

color, fixed micro-oxygenation, SEGs, winemaking techniques implementation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.