terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

Abstract

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.

To achieve this, Tempranillo wines were in contact with their own SEGs and with those from Cabernet Sauvignon variety in two different doses (D1 and D2). SEGs were added at the end of malolactic fermentation and two fixed doses of micro-oxygenation (low, LMOX; and high, HMOX) were considered during the entire period of SEGs contact. At the end of the SEGs-MOX treatments, wines were bottled and stored at temperature and humidity-controlled conditions for 6 months. Wines were characterized in terms of visible spectra, CIELab and individual anthocyanin compounds (HPLC-DAD) to study the color evolution at bottling time and after 3 and 6 months in the bottle.

The results showed that at the end of the treatments, wines micro-oxygenated with the lower dosage (L-MOX) received 6.24 ± 0.87 mg/L per month while those from higher dosage (H-MOX) received 11.91 ± 0.71 mg/L per month. The spectral information showed that in general there was a decrease in the color of SEGs-MOX wines with respect to the control, being more pronounced at bottle time. This reduction was greater when the higher SEGs dose were used, but MOX doses considered did not seem to have a differentiating effect. Specific, only in wines with Cabernet Sauvignon SEGs and D1 the H-MOX produced less color loss; however, for Tempranillo SEGs, the highest dose (D2) combined with L-MOX showed the least color reduction. This reduction in color was observed during the bottle time, being less pronounced after 6 months. The greatest reductions were observed for the red tones (A520) and to a lesser extent for the blue ones (A620). The anthocyanin pormenorized analysis revealed the same behavior, being malvi-din-3-O-glucoside the one that presented the greatest decrease. These first results could indicate that MOX would have to establish it based on SEGs variety and dosage.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rosario Sánchez-Gómez¹, Cristina Cebrián-Tarancón¹, Ana María Martínez-Gil², Rubén Barrio-Galán², Gonzalo

1. Cátedra de Química Agrícola, E.T.S.Ingeniería Agronómica y de Montes y Biotecnología, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071 Albacete, Spain.
2. Departamento de Química Analítica, UVaMOX – Universidad de Valladolid, 34004 Palencia, Spain.

Contact the author*

Keywords

color, fixed micro-oxygenation, SEGs, winemaking techniques implementation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.