OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Exploring multisensory interactions through the study of astringency diversity of mono-varietal Italian red wines

Exploring multisensory interactions through the study of astringency diversity of mono-varietal Italian red wines

Abstract

According to the OIV Focus 2017 estimating the vine varieties distribution in the world, Italy is the richest grape producing country in terms of varieties. This rich biodiversity translates into a wide sensory diversity of the wines that was never systematically investigated. The D-Wines (Diversity of Italian Wines) project, is aimed to start filling this gap by getting a wide chemical and sensorial multi-parametric dataset about 11 mono-varietal red wines (Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Nerello Mascalese, Primitivo, Raboso, Sagrantino, Sangiovese, Teroldego) representative of the Italian territory and by focusing on tannins and astringency.

In this frame, the astringency diversity of a set of 112 wines belonging to the 11 varieties, was investigated by sensory analysis adopting a multi-steps analytical strategy. A first experiment by sorting, allowed to reduce (AHC analysis) the sample-set to 77 wines, representative of the intra-varietal similarities and diversities in terms of astringency sub-qualities. A second experiment by descriptive analysis was performed on the selected wines and allowed to obtain their sensory profiles (astringency, taste, odor). Both intra- and inter-varietal significant differences of each sensory variable was tested by ANOVA (p<0.05).

Quantitative data concerning astringency were analyzed through Discriminant Analysis (DA).

Results showed that the 6 variables describing astringency (drying, harsh, unripe, dynamic, complex, surface smoothness; Gawel et al., 2000) allowed a good discrimination (F1+F2: 78 %) of the wines according to the grape variety. Factor scores of each sample allowed their reclassification into the variety for which the probability of belonging was the greatest. The 57 % of the wines resulted correctly reclassified, with Nebbiolo showing the highest value (83 %) and Nerello Mascalese the lowest (0 %).

The quantitative data concerning the well reclassified wines were used to develop “Astringency spectra”, models representing the astringency features of each mono-varietal wine.

These “Spectra” were compared to those of the corresponding deodorized wines in order to investigate the multisensory interactions between astringency, taste and odor variables. Several significant correlations were detected (e.g. R2>0.5: drying and dynamic, drying and dehydrated fruit, complex and spicy were positively correlated while harsh and acid were negatively correlated).

Acknowledgements:

MIUR project N. 20157RN44Y. Other components of D-Wines project: P. Arapitsas, A. Gambuti, S. Giacosa, M. Marangon, A. Ricci, L. Rolle, S. Río Segade, B. Simonato, G. Tornielli, A. Versari, S. Vincenzi

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Paola Piombino (1), E. Pittari (1), M. Ugliano (2), A. Curioni (3), F. Mattivi (4,5), V. Gerbi (6), G.P. Parpinello (7), L. Moio (1)

(1) Department of Agricultural Sciences, University of Naples Federico II, Division of Vine and Wine Sciences, University of Naples Federico II – V.le Italia s.n.c. 83100 – Avellino Italy
(2) Department of Biotechnology, University of Verona, It
(3) Department of Agronomy, University of Padova, It
(4) Department of Food Quality and Nutrition, Fondazione Edmund Mach, It
(5) Center Agriculture Food Environment, University of Trento, It
(6) Department of Agricultural, Forestry and Food Sciences, University of Torino, It
(7) Department of Agricultural and Food Sciences, University of Bologna, It

Contact the author

Keywords

mouthfeel and odor, diversity, interactions, chemometrics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.

Different oxygen and sulphur dioxide concentrations in ‘Sauvignon blanc’ must: effect on the composition of the must and wine

The effects of different oxygen and sulphur dioxide additions to South African ‘Sauvignon blanc’ musts were investigated. Oxygen addition without SO2 protection led to lower levels of certain volatile thiols in the wines, with a corresponding decrease in certain phenols and glutathione concentrations.

Investigation of the biostimulant activity of naringenin on anthocyanins biosynthesis: from an explanatory transcriptomic approach on Gamay callus towards a future vineyard application

Context and purpose of the study. Anthocyanins are essential phenolic compounds in red wine, contributing significantly to colour intensity, stability, and sensory quality.

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

Using gene editing to improve the hydraulic properties of grapevine roots under water stress conditions

Context and purpose of the study. Epidermal Patterning Factors are a family of small peptides that are highly conserved in the plant kingdom and are involved in several physiological and developmental processes.