OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Exploring multisensory interactions through the study of astringency diversity of mono-varietal Italian red wines

Exploring multisensory interactions through the study of astringency diversity of mono-varietal Italian red wines

Abstract

According to the OIV Focus 2017 estimating the vine varieties distribution in the world, Italy is the richest grape producing country in terms of varieties. This rich biodiversity translates into a wide sensory diversity of the wines that was never systematically investigated. The D-Wines (Diversity of Italian Wines) project, is aimed to start filling this gap by getting a wide chemical and sensorial multi-parametric dataset about 11 mono-varietal red wines (Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Nerello Mascalese, Primitivo, Raboso, Sagrantino, Sangiovese, Teroldego) representative of the Italian territory and by focusing on tannins and astringency.

In this frame, the astringency diversity of a set of 112 wines belonging to the 11 varieties, was investigated by sensory analysis adopting a multi-steps analytical strategy. A first experiment by sorting, allowed to reduce (AHC analysis) the sample-set to 77 wines, representative of the intra-varietal similarities and diversities in terms of astringency sub-qualities. A second experiment by descriptive analysis was performed on the selected wines and allowed to obtain their sensory profiles (astringency, taste, odor). Both intra- and inter-varietal significant differences of each sensory variable was tested by ANOVA (p<0.05).

Quantitative data concerning astringency were analyzed through Discriminant Analysis (DA).

Results showed that the 6 variables describing astringency (drying, harsh, unripe, dynamic, complex, surface smoothness; Gawel et al., 2000) allowed a good discrimination (F1+F2: 78 %) of the wines according to the grape variety. Factor scores of each sample allowed their reclassification into the variety for which the probability of belonging was the greatest. The 57 % of the wines resulted correctly reclassified, with Nebbiolo showing the highest value (83 %) and Nerello Mascalese the lowest (0 %).

The quantitative data concerning the well reclassified wines were used to develop “Astringency spectra”, models representing the astringency features of each mono-varietal wine.

These “Spectra” were compared to those of the corresponding deodorized wines in order to investigate the multisensory interactions between astringency, taste and odor variables. Several significant correlations were detected (e.g. R2>0.5: drying and dynamic, drying and dehydrated fruit, complex and spicy were positively correlated while harsh and acid were negatively correlated).

Acknowledgements:

MIUR project N. 20157RN44Y. Other components of D-Wines project: P. Arapitsas, A. Gambuti, S. Giacosa, M. Marangon, A. Ricci, L. Rolle, S. Río Segade, B. Simonato, G. Tornielli, A. Versari, S. Vincenzi

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Paola Piombino (1), E. Pittari (1), M. Ugliano (2), A. Curioni (3), F. Mattivi (4,5), V. Gerbi (6), G.P. Parpinello (7), L. Moio (1)

(1) Department of Agricultural Sciences, University of Naples Federico II, Division of Vine and Wine Sciences, University of Naples Federico II – V.le Italia s.n.c. 83100 – Avellino Italy
(2) Department of Biotechnology, University of Verona, It
(3) Department of Agronomy, University of Padova, It
(4) Department of Food Quality and Nutrition, Fondazione Edmund Mach, It
(5) Center Agriculture Food Environment, University of Trento, It
(6) Department of Agricultural, Forestry and Food Sciences, University of Torino, It
(7) Department of Agricultural and Food Sciences, University of Bologna, It

Contact the author

Keywords

mouthfeel and odor, diversity, interactions, chemometrics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

In the old-world viticulture, there is a common but most often not scientifically proved consideration that supplemental irrigation should detrimentally affect berry and wine composition. In the semi-arid

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

An overview of geological influences on South African vineyards

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.