OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Exploring multisensory interactions through the study of astringency diversity of mono-varietal Italian red wines

Exploring multisensory interactions through the study of astringency diversity of mono-varietal Italian red wines

Abstract

According to the OIV Focus 2017 estimating the vine varieties distribution in the world, Italy is the richest grape producing country in terms of varieties. This rich biodiversity translates into a wide sensory diversity of the wines that was never systematically investigated. The D-Wines (Diversity of Italian Wines) project, is aimed to start filling this gap by getting a wide chemical and sensorial multi-parametric dataset about 11 mono-varietal red wines (Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Nerello Mascalese, Primitivo, Raboso, Sagrantino, Sangiovese, Teroldego) representative of the Italian territory and by focusing on tannins and astringency.

In this frame, the astringency diversity of a set of 112 wines belonging to the 11 varieties, was investigated by sensory analysis adopting a multi-steps analytical strategy. A first experiment by sorting, allowed to reduce (AHC analysis) the sample-set to 77 wines, representative of the intra-varietal similarities and diversities in terms of astringency sub-qualities. A second experiment by descriptive analysis was performed on the selected wines and allowed to obtain their sensory profiles (astringency, taste, odor). Both intra- and inter-varietal significant differences of each sensory variable was tested by ANOVA (p<0.05).

Quantitative data concerning astringency were analyzed through Discriminant Analysis (DA).

Results showed that the 6 variables describing astringency (drying, harsh, unripe, dynamic, complex, surface smoothness; Gawel et al., 2000) allowed a good discrimination (F1+F2: 78 %) of the wines according to the grape variety. Factor scores of each sample allowed their reclassification into the variety for which the probability of belonging was the greatest. The 57 % of the wines resulted correctly reclassified, with Nebbiolo showing the highest value (83 %) and Nerello Mascalese the lowest (0 %).

The quantitative data concerning the well reclassified wines were used to develop “Astringency spectra”, models representing the astringency features of each mono-varietal wine.

These “Spectra” were compared to those of the corresponding deodorized wines in order to investigate the multisensory interactions between astringency, taste and odor variables. Several significant correlations were detected (e.g. R2>0.5: drying and dynamic, drying and dehydrated fruit, complex and spicy were positively correlated while harsh and acid were negatively correlated).

Acknowledgements:

MIUR project N. 20157RN44Y. Other components of D-Wines project: P. Arapitsas, A. Gambuti, S. Giacosa, M. Marangon, A. Ricci, L. Rolle, S. Río Segade, B. Simonato, G. Tornielli, A. Versari, S. Vincenzi

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Paola Piombino (1), E. Pittari (1), M. Ugliano (2), A. Curioni (3), F. Mattivi (4,5), V. Gerbi (6), G.P. Parpinello (7), L. Moio (1)

(1) Department of Agricultural Sciences, University of Naples Federico II, Division of Vine and Wine Sciences, University of Naples Federico II – V.le Italia s.n.c. 83100 – Avellino Italy
(2) Department of Biotechnology, University of Verona, It
(3) Department of Agronomy, University of Padova, It
(4) Department of Food Quality and Nutrition, Fondazione Edmund Mach, It
(5) Center Agriculture Food Environment, University of Trento, It
(6) Department of Agricultural, Forestry and Food Sciences, University of Torino, It
(7) Department of Agricultural and Food Sciences, University of Bologna, It

Contact the author

Keywords

mouthfeel and odor, diversity, interactions, chemometrics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Guyot or pergola for dehydration of Rondinella grape

Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties

Use of the stics crop model as a tool to inform vineyard zonages

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.

Climatic groups in Ibero-America viticulture compared to worldwide wine producer regions

The wine production is an important activity in many Ibero-American countries. The wine producer regions of these countries configure a large use of different climate types and viticultural climates.

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.
This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.