OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Red wine astringency: evolution of tribological parameters during different harvest dates

Red wine astringency: evolution of tribological parameters during different harvest dates

Abstract

Astringency is a specific oral sensation dominated by dryness and puckering feeling and is one of the leading quality factors for red wines, as well as some fruit products. Based on this sensory parameter, are made relevant decisions in wine production including the moment of grape harvest (phenolic ripeness), the time and intensity of maceration, the time and type of aging process, and the target market of wines. Notably, the selection of the optimal grape astringency during ripeness is one of the most crucial decisions in winemaking. However, grape astringency is an attribute challenging to evaluate and standardize by tasters since the grapes are heterogeneous and generate along their ripeness different sensory descriptors, such as the typical drying astringency found in immature grapes. Here we used a tribological system to determinate the red wine astringency produced on different harvest dates. Mixtures of whole human saliva and red wines as Cabernet Sauvignon and Carménère, with similar tannin content but different sub-quality (rough and soft/velvety, respectively), were evaluated by their lubrication behavior. Red wines produced significant changes in the saliva friction coefficient during the harvest dates, with an opposite evolution between the Cabernet Sauvignon and Carménère. Also, microstructure observation revealed differences between conformation and surface of the tan-ninprotein aggregates of both red wines, suggesting a correlation between them and the astringency sensory perception. Results from this work demonstrate that tribology techniques can be a useful tool for both to evaluate astringency on red wines and to help us to understand the phenomenon of sub-qualities.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Natalia Brossard, Giuseppina Parpinello, Fernando Osorio, Edmundo Bordeu, Jianshe Chen

Department of Food Sciences, University of Bologna, P.za Goidanich 60, I-47023 Cesena, Italy.
Department of Food Science and Technology, University of Santiago Chile, Avda. Libertador Bernardo O’Higgins 3363, San-tiago, 9170022, Chile.
Department of Fruit Trees and Enology, Pontifical Catholic University of Chile, Avda. Vicuña Mackenna 4860, Santiago, 7820436, Chile.
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China.

Contact the author

Keywords

wine astringency, tribology, human saliva, harvest dates 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.

Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Biogenic amines exist in numerous foods, including wine. They can have aliphatic (putrescine, cadaverine, spermine, and spermidine), aromatic (tyramine and phenylethylamine) and heterocyclic structure (histamine and tryptamine)