terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

Abstract

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

This project aimed at evaluating the effectiveness of functionalized mesoporous silica (FMS), in removing heat unstable proteins from white musts and wines. FMS treatments were benchmarked against a commercial Na-Bentonite in a series of experiments conducted on heat unstable white musts and wines of different origin, vintage and variety, and on different scales (from few mL to 10 hL). The stabilizing properties of the fining agents were determined by analyzing the protein profiles of treated wines (by RP-HPLC), and by assessing protein stability via heat tests [3]. In addition, the treatments’ impact on other wine parameters (e.g., organic acid profiles, metal content, macromolecules, lees formation, sensory analysis) were determined.

For each wine, the dose of bentonite and FMS needed to reach full protein stability was determined by fining rate trials. The amount of FMS needed to stabilize the wines was always in line with that of bentonite, with a small variability (±10%) attributable to differences in wine composition. FMS effectively removed both thaumatin-like proteins and chitinases in a dose dependent mode, without causing other modifications on wine composition in terms of organic acid profile, ethanol content, glycerol, volatile composition, and metal content that, on the other hand, was always modified by bentonite fining that always led to an increase in Fe and Al. The analysis by triangle test of two white wines (Sauvignon blanc and Traminer) stabilized with FMS or bentonite at similar addition rates revealed the lack of significant differences (total answers = 39, p = 0. 5599 for S. blanc, p = 0.1184 for Traminer). In general, FMS showed to effectively stabilized wines at addition rates similar to those of bentonite, without causing major compositional modification, nor detectable sensory impacts, and therefore they represent a good candidate to become a viable bentonite alternative.

 

1. Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. J. Agric. Food Chem. 2015, 63, 4020–4030.
2. Lambri, M.; Dordoni, R.; Silva, A.; Faveri, D.M.D. Effect of Bentonite Fining on Odor-Active Compounds in Two Different White Wine Styles. Am. J. Enol. Vitic. 2010, 61:2, 225–233.
3. McRae, J.M.; Barricklow, V.; Pocock, K.F.; Smith, P.A. Predicting Protein Haze Formation in White Wines. Aust. J. Grape Wine Res. 2018, 24, 504–511.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Matteo Marangon1,2, Lucia Bernardi¹, Edward Brearley-Smith¹, Christine Mayr Marangon¹, Fabio Angiuli³, Stefano Caramori³, Roberto Argazzi⁴, Gianni Triulzi⁵, Alessandra Basana⁵

1. Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Uni-versità, 16, 35020 Legnaro (PD), Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, 31015 Conegliano, Italy
3. Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
4. CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
5. Enartis – ESSECO srl, Via San Cassiano 99, 28069 Trecate NO, Italy

Contact the author*

Keywords

protein, stability, bentonite, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must.

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².