terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

Abstract

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

This project aimed at evaluating the effectiveness of functionalized mesoporous silica (FMS), in removing heat unstable proteins from white musts and wines. FMS treatments were benchmarked against a commercial Na-Bentonite in a series of experiments conducted on heat unstable white musts and wines of different origin, vintage and variety, and on different scales (from few mL to 10 hL). The stabilizing properties of the fining agents were determined by analyzing the protein profiles of treated wines (by RP-HPLC), and by assessing protein stability via heat tests [3]. In addition, the treatments’ impact on other wine parameters (e.g., organic acid profiles, metal content, macromolecules, lees formation, sensory analysis) were determined.

For each wine, the dose of bentonite and FMS needed to reach full protein stability was determined by fining rate trials. The amount of FMS needed to stabilize the wines was always in line with that of bentonite, with a small variability (±10%) attributable to differences in wine composition. FMS effectively removed both thaumatin-like proteins and chitinases in a dose dependent mode, without causing other modifications on wine composition in terms of organic acid profile, ethanol content, glycerol, volatile composition, and metal content that, on the other hand, was always modified by bentonite fining that always led to an increase in Fe and Al. The analysis by triangle test of two white wines (Sauvignon blanc and Traminer) stabilized with FMS or bentonite at similar addition rates revealed the lack of significant differences (total answers = 39, p = 0. 5599 for S. blanc, p = 0.1184 for Traminer). In general, FMS showed to effectively stabilized wines at addition rates similar to those of bentonite, without causing major compositional modification, nor detectable sensory impacts, and therefore they represent a good candidate to become a viable bentonite alternative.

 

1. Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. J. Agric. Food Chem. 2015, 63, 4020–4030.
2. Lambri, M.; Dordoni, R.; Silva, A.; Faveri, D.M.D. Effect of Bentonite Fining on Odor-Active Compounds in Two Different White Wine Styles. Am. J. Enol. Vitic. 2010, 61:2, 225–233.
3. McRae, J.M.; Barricklow, V.; Pocock, K.F.; Smith, P.A. Predicting Protein Haze Formation in White Wines. Aust. J. Grape Wine Res. 2018, 24, 504–511.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Matteo Marangon1,2, Lucia Bernardi¹, Edward Brearley-Smith¹, Christine Mayr Marangon¹, Fabio Angiuli³, Stefano Caramori³, Roberto Argazzi⁴, Gianni Triulzi⁵, Alessandra Basana⁵

1. Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Uni-versità, 16, 35020 Legnaro (PD), Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, 31015 Conegliano, Italy
3. Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
4. CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
5. Enartis – ESSECO srl, Via San Cassiano 99, 28069 Trecate NO, Italy

Contact the author*

Keywords

protein, stability, bentonite, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].