terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

Abstract

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

This project aimed at evaluating the effectiveness of functionalized mesoporous silica (FMS), in removing heat unstable proteins from white musts and wines. FMS treatments were benchmarked against a commercial Na-Bentonite in a series of experiments conducted on heat unstable white musts and wines of different origin, vintage and variety, and on different scales (from few mL to 10 hL). The stabilizing properties of the fining agents were determined by analyzing the protein profiles of treated wines (by RP-HPLC), and by assessing protein stability via heat tests [3]. In addition, the treatments’ impact on other wine parameters (e.g., organic acid profiles, metal content, macromolecules, lees formation, sensory analysis) were determined.

For each wine, the dose of bentonite and FMS needed to reach full protein stability was determined by fining rate trials. The amount of FMS needed to stabilize the wines was always in line with that of bentonite, with a small variability (±10%) attributable to differences in wine composition. FMS effectively removed both thaumatin-like proteins and chitinases in a dose dependent mode, without causing other modifications on wine composition in terms of organic acid profile, ethanol content, glycerol, volatile composition, and metal content that, on the other hand, was always modified by bentonite fining that always led to an increase in Fe and Al. The analysis by triangle test of two white wines (Sauvignon blanc and Traminer) stabilized with FMS or bentonite at similar addition rates revealed the lack of significant differences (total answers = 39, p = 0. 5599 for S. blanc, p = 0.1184 for Traminer). In general, FMS showed to effectively stabilized wines at addition rates similar to those of bentonite, without causing major compositional modification, nor detectable sensory impacts, and therefore they represent a good candidate to become a viable bentonite alternative.

 

1. Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. J. Agric. Food Chem. 2015, 63, 4020–4030.
2. Lambri, M.; Dordoni, R.; Silva, A.; Faveri, D.M.D. Effect of Bentonite Fining on Odor-Active Compounds in Two Different White Wine Styles. Am. J. Enol. Vitic. 2010, 61:2, 225–233.
3. McRae, J.M.; Barricklow, V.; Pocock, K.F.; Smith, P.A. Predicting Protein Haze Formation in White Wines. Aust. J. Grape Wine Res. 2018, 24, 504–511.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Matteo Marangon1,2, Lucia Bernardi¹, Edward Brearley-Smith¹, Christine Mayr Marangon¹, Fabio Angiuli³, Stefano Caramori³, Roberto Argazzi⁴, Gianni Triulzi⁵, Alessandra Basana⁵

1. Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Uni-versità, 16, 35020 Legnaro (PD), Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, 31015 Conegliano, Italy
3. Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
4. CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
5. Enartis – ESSECO srl, Via San Cassiano 99, 28069 Trecate NO, Italy

Contact the author*

Keywords

protein, stability, bentonite, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.