terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

Abstract

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

This project aimed at evaluating the effectiveness of functionalized mesoporous silica (FMS), in removing heat unstable proteins from white musts and wines. FMS treatments were benchmarked against a commercial Na-Bentonite in a series of experiments conducted on heat unstable white musts and wines of different origin, vintage and variety, and on different scales (from few mL to 10 hL). The stabilizing properties of the fining agents were determined by analyzing the protein profiles of treated wines (by RP-HPLC), and by assessing protein stability via heat tests [3]. In addition, the treatments’ impact on other wine parameters (e.g., organic acid profiles, metal content, macromolecules, lees formation, sensory analysis) were determined.

For each wine, the dose of bentonite and FMS needed to reach full protein stability was determined by fining rate trials. The amount of FMS needed to stabilize the wines was always in line with that of bentonite, with a small variability (±10%) attributable to differences in wine composition. FMS effectively removed both thaumatin-like proteins and chitinases in a dose dependent mode, without causing other modifications on wine composition in terms of organic acid profile, ethanol content, glycerol, volatile composition, and metal content that, on the other hand, was always modified by bentonite fining that always led to an increase in Fe and Al. The analysis by triangle test of two white wines (Sauvignon blanc and Traminer) stabilized with FMS or bentonite at similar addition rates revealed the lack of significant differences (total answers = 39, p = 0. 5599 for S. blanc, p = 0.1184 for Traminer). In general, FMS showed to effectively stabilized wines at addition rates similar to those of bentonite, without causing major compositional modification, nor detectable sensory impacts, and therefore they represent a good candidate to become a viable bentonite alternative.

 

1. Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. J. Agric. Food Chem. 2015, 63, 4020–4030.
2. Lambri, M.; Dordoni, R.; Silva, A.; Faveri, D.M.D. Effect of Bentonite Fining on Odor-Active Compounds in Two Different White Wine Styles. Am. J. Enol. Vitic. 2010, 61:2, 225–233.
3. McRae, J.M.; Barricklow, V.; Pocock, K.F.; Smith, P.A. Predicting Protein Haze Formation in White Wines. Aust. J. Grape Wine Res. 2018, 24, 504–511.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Matteo Marangon1,2, Lucia Bernardi¹, Edward Brearley-Smith¹, Christine Mayr Marangon¹, Fabio Angiuli³, Stefano Caramori³, Roberto Argazzi⁴, Gianni Triulzi⁵, Alessandra Basana⁵

1. Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Uni-versità, 16, 35020 Legnaro (PD), Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, 31015 Conegliano, Italy
3. Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
4. CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
5. Enartis – ESSECO srl, Via San Cassiano 99, 28069 Trecate NO, Italy

Contact the author*

Keywords

protein, stability, bentonite, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.