terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

Abstract

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

This project aimed at evaluating the effectiveness of functionalized mesoporous silica (FMS), in removing heat unstable proteins from white musts and wines. FMS treatments were benchmarked against a commercial Na-Bentonite in a series of experiments conducted on heat unstable white musts and wines of different origin, vintage and variety, and on different scales (from few mL to 10 hL). The stabilizing properties of the fining agents were determined by analyzing the protein profiles of treated wines (by RP-HPLC), and by assessing protein stability via heat tests [3]. In addition, the treatments’ impact on other wine parameters (e.g., organic acid profiles, metal content, macromolecules, lees formation, sensory analysis) were determined.

For each wine, the dose of bentonite and FMS needed to reach full protein stability was determined by fining rate trials. The amount of FMS needed to stabilize the wines was always in line with that of bentonite, with a small variability (±10%) attributable to differences in wine composition. FMS effectively removed both thaumatin-like proteins and chitinases in a dose dependent mode, without causing other modifications on wine composition in terms of organic acid profile, ethanol content, glycerol, volatile composition, and metal content that, on the other hand, was always modified by bentonite fining that always led to an increase in Fe and Al. The analysis by triangle test of two white wines (Sauvignon blanc and Traminer) stabilized with FMS or bentonite at similar addition rates revealed the lack of significant differences (total answers = 39, p = 0. 5599 for S. blanc, p = 0.1184 for Traminer). In general, FMS showed to effectively stabilized wines at addition rates similar to those of bentonite, without causing major compositional modification, nor detectable sensory impacts, and therefore they represent a good candidate to become a viable bentonite alternative.

 

1. Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. J. Agric. Food Chem. 2015, 63, 4020–4030.
2. Lambri, M.; Dordoni, R.; Silva, A.; Faveri, D.M.D. Effect of Bentonite Fining on Odor-Active Compounds in Two Different White Wine Styles. Am. J. Enol. Vitic. 2010, 61:2, 225–233.
3. McRae, J.M.; Barricklow, V.; Pocock, K.F.; Smith, P.A. Predicting Protein Haze Formation in White Wines. Aust. J. Grape Wine Res. 2018, 24, 504–511.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Matteo Marangon1,2, Lucia Bernardi¹, Edward Brearley-Smith¹, Christine Mayr Marangon¹, Fabio Angiuli³, Stefano Caramori³, Roberto Argazzi⁴, Gianni Triulzi⁵, Alessandra Basana⁵

1. Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Uni-versità, 16, 35020 Legnaro (PD), Italy
2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, 31015 Conegliano, Italy
3. Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
4. CNR-ISOF c/o Department of Chemical, Pharmaceutical and Agricultural Sciences University of Ferrara Via L.Borsari 46, 44121, Ferrara, Italy
5. Enartis – ESSECO srl, Via San Cassiano 99, 28069 Trecate NO, Italy

Contact the author*

Keywords

protein, stability, bentonite, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.