terclim by ICS banner
IVES 9 IVES Conference Series 9 METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

Abstract

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature. The goal of this study was to highlight some potential aromatic markers specific to Zelen in comparison to other international and regional varieties grown in Slovenia. A first batch of 28 white wines from different Slovenian wine regions including 8 Zelen wines, were analysed for their contents in volatile thiols by GC/MS/MS, terpenoids, and untargeted screening by HS/SPME-GC/MS. Thereafter a second batch of 67 wines from Vipava valley including 25 Zelen wines, were analysed for their contents in methyl salicylate and volatile phenols by HS/SPME-GC/MS. The first batch of analyses showed that Zelen had lower content in volatile thiols and higher concentration in some monoterpenols such as linalool in comparison to other varieties. Nevertheless, two com- pounds identified with the untargeted analysis seemed to be particularly important in Zelen wines aro- matic profile: methyl salicylate and 4-vinylguaiacol. The second batch of analysis confirmed this trend with the average concentration of methyl salicylate at 14 µg/L and 3 µg/L in Zelen and other wines respectively. The highest concentration was measured at 38 µg/L in one Zelen wine, which corresponds to the sensory threshold measured in neutral white wines [1]. Methyl salicylate has recently gained some attention as it was found that this compound could contribute to the Italian Verdicchio and Lugana wines aromatic profile [1,2] and to some Bordeaux red wines made under specific conditions [3,4]. Zelen wines also displayed higher concentrations of 4-vinylguaiacol with 30% of Zelen wines having concentrations above the perception threshold reported for white wines [5]. Preliminary sensory investigations suggested that both compounds could potentially contribute to Zelen aromatic typicality.

 

1. Slaghenaufi, D.; Luzzini, G.; Solis, J. S.; Forte, F., Ugliano, M.; Two Sides to One Story—Aroma Chemical and Sensory Signature of Lugana and Verdicchio Wines (2021), Molecules 26: 2127.
2. Carlin, S.; Vrhovsek, U.; Lonardi, A.; Landi L.; Mattivi F., Aromatic complexity in Verdicchio wines: a case study. (2019), OENO One 4: 597-610
3. Pelonnier-Magimel, E.; Lytra, G.; Franc, C.; Farris, L.; Darriet, P.; Barbe, J-C. Methyl Salicylate, an Odor-Active Compound in Bordeaux Red Wines Produced without Sulfites Addition (2022), J. Agric. Food Chem.70: 39
4. Poitou, X.; Redon, P.; Pons, A.; Bruez, E.; Delière, L.; Marchal, A.; Cholet, C.; Geny-Denis, L.; Darriet, P. Methyl salicylate, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases. (2021). Food Chem. 360:130120
5. Chatonnet, P.; Dubordieu, D.; Boidron, J-N.; Lavigne, V.; Synthesis of volatile phenols by Saccharomyces cerevisiae in wines (1993). J. Sci. Food Agric. 62(2): 191–202 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Guillaume Antalick¹, Mitja Martelanc¹, Tatjana Radovanović Vukajlović¹, Diana Martin¹, Katja Šuklje², Andreja Vanzo², Klemen Lisjak², Davide Slaghenaufi³ Branka Mozetič Vodopivec¹, Melita Sternad Lemut¹, Lorena Butinar¹

1. University of Nova Gorica, Wine Research Centre, Lanthieri Palace, Glavni trg 8, SI-5271 Vipava, Slovenia
2. Agricultural Institute of Slovenia, Department of Fruit Growing, Viticulture and Oenology, Hacquetova ulica 17, 1000 Ljubl-jana, Slovenia
3. Department of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

Zelen, typicality, methyl salicylate, 4-vinylguaiacol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.