OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Abstract

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions. However, most of it is based on anecdotal knowledge and scientific studies relating berry and wine properties are rather limited [1]. 

Ten grapes of each variety (Sauvignon Blanc, Riesling, Pinot Noir) were picked weekly. Berries were dissected manually to obtain berries with intact peduncles. Using sucrose solutions of different densities, berries were separated into three density fractions of 1.070, 1.080, and 1.090. Three individual berries were assessed of each density group on each picking date. White and red wines were made from grapes picked concurrently with berry samples and were fermented in duplicates [2]. 

For Sauvignon Blanc 13 out of 21 visual, haptic, odor and taste attributes varied significantly among the three picking dates. Firmness and yellow color of the berries and brown color of the seeds and bitter berry skins yielded the largest F-ratios. Green notes in pulp and skin decreased during ripening. Variation of grape berry density yielded 14 significant attributes, including sweet and sour taste as well as fruity perception [2]. 

In a PCA the first PC was governed by ripe versus unripe attributes, while PC2 was dominated by presence versus absence of green odors in pulp and skin. Sensory evaluation revealed better grouping by density than grouping by picking date. 

Correlating berry and wine sensory brown seeds and sweet pulp correlated with increased peach and passionfruit notes in the wines. However, no correlation was found for green notes depicted in berries and green bell pepper nuances in the wines or fruity aspects in the berry and passion fruit / peach intensities in the wine. 

In conclusion, berry sensory yields a good characterization of the ripening process as well as technological grape properties, but is rather limited in the prediction of wine sensory properties. 

[1] Winter, E, Whiting, J., Rousseau, J. Berry Sensory Assessment, 2004, Winetitles, Adelaide, Australia 
[2] Nopora, J., Klink, S., Fischer, U. Reifeprüfung – Aussagekraft der Beerensensorik bei der Reifemessung, 2018, Der Deutsche Weinbau 17/18, pg. 26-30

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ulrich Fischer, Julia Nopora

Rebschule Freytag, 67435 Lachen-Speyerdorf, Germany
Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

Sensory evaluation, grape berry, grape maturity, wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

Nuove soluzioni e strumenti per l’agricoltura e la viticoltura di precisione

GEOSPHERA s. r. l. e TERR.A.IN. CNS, forti della grande esperienza dei loro collaboratori nell’ambito delle scienze naturali, della geologia, della geofisica e dell’informatica, garantiscono risposte innovative alle problematiche della moderna agricoltura rivolgendosi direttamente ai viticoltori, ai commercianti vinicoli ed ai liberi professionisti.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.