OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Abstract

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions. However, most of it is based on anecdotal knowledge and scientific studies relating berry and wine properties are rather limited [1]. 

Ten grapes of each variety (Sauvignon Blanc, Riesling, Pinot Noir) were picked weekly. Berries were dissected manually to obtain berries with intact peduncles. Using sucrose solutions of different densities, berries were separated into three density fractions of 1.070, 1.080, and 1.090. Three individual berries were assessed of each density group on each picking date. White and red wines were made from grapes picked concurrently with berry samples and were fermented in duplicates [2]. 

For Sauvignon Blanc 13 out of 21 visual, haptic, odor and taste attributes varied significantly among the three picking dates. Firmness and yellow color of the berries and brown color of the seeds and bitter berry skins yielded the largest F-ratios. Green notes in pulp and skin decreased during ripening. Variation of grape berry density yielded 14 significant attributes, including sweet and sour taste as well as fruity perception [2]. 

In a PCA the first PC was governed by ripe versus unripe attributes, while PC2 was dominated by presence versus absence of green odors in pulp and skin. Sensory evaluation revealed better grouping by density than grouping by picking date. 

Correlating berry and wine sensory brown seeds and sweet pulp correlated with increased peach and passionfruit notes in the wines. However, no correlation was found for green notes depicted in berries and green bell pepper nuances in the wines or fruity aspects in the berry and passion fruit / peach intensities in the wine. 

In conclusion, berry sensory yields a good characterization of the ripening process as well as technological grape properties, but is rather limited in the prediction of wine sensory properties. 

[1] Winter, E, Whiting, J., Rousseau, J. Berry Sensory Assessment, 2004, Winetitles, Adelaide, Australia 
[2] Nopora, J., Klink, S., Fischer, U. Reifeprüfung – Aussagekraft der Beerensensorik bei der Reifemessung, 2018, Der Deutsche Weinbau 17/18, pg. 26-30

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ulrich Fischer, Julia Nopora

Rebschule Freytag, 67435 Lachen-Speyerdorf, Germany
Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

Sensory evaluation, grape berry, grape maturity, wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…

Variabilité des critères de délimitation dans les AOC françaises

La délimitation de l’aire de production d’une appellation d’origine contrôlée française est une opération essentielle. Le décret-loi du 30 juillet 1935, qui a créé le système des appellations d’origine contrôlées

Genomic characterization of terpene biosynthetic genes in seven Vitis vinifera L. varieties 

Grapes (Vitis vinifera L.) are a fruit crop of high economic significance globally. Each grapevine cultivar is characterized by its distinctive grape aroma, affecting the wine quality. In several cultivars, the aroma is shaped by terpenoid (mono- and sesqui-terpenoids). Their profile is controlled by terpene synthases (TPS), which are part of a largely expanded gene family. How the variation in TPS copy number and sequence among cultivars determines terpenoid profiles of grapes remains largely unexplored. We annotated TPS in the haplotypes of seven genomes (Riesling, Albariño, Fiano, Gewürztraminer, Pinot Noir, Cabernet Sauvignon, and Viognier) using BLAST, GMAP, PFAM, and phylogenetic analyses. Further, TPS expression patterns and terpenoid accumulation during berry development and ripening were characterized using RNA-Seq and SPME/GC-MS platforms, respectively. Variation in TPS copy number exists among cultivars. Specifically, the TPS counts span a range of 251 to 150 for Riesling and Fiano, respectively, when considering combined haplotypes within each cultivar. Total terpenoid accumulation patterns throughout development were consistent among the five aromatic cultivars, marked by high concentrations in flowers, followed by a decline and subsequent rise during berry development and ripening, respectively. Conversely, non-aromatic cultivars exhibited no substantial increase in terpenoid concentration during ripening. Transcriptome and network analyses are currently employed to determine which TPS are expressed in the berry and determine the terpenoid profile of the specific cultivar. These findings shed light on the genomic determinants of grape aroma in major cultivars, and allow future studies focused on cultivar-specific responses of terpenoid biosynthesis to environmental stresses.

Towards adaptation to climate change in Rioja: Quality evaluation of wines obtained from Grenache x Tempranillo selections

The wine sector is of great relevance and tradition in Mediterranean countries, however, it may be most susceptible to climate change. In recent years, wine production is facing changes worldwide, both at environmental as well as commercial levels, due to global warming and the shift in consumers’ preferences. Wine growers and wine makers are in search of solutions that allow to face these new challenges. One of the most promising initiatives in the long term is the introduction of new plant materials, specifically intraspecific hybridizations between premium varieties that may improve traditional germplasm in its adaptation to climate change. These inter-varietal crosses have the potential to generate quality wines, whilst maintaining the regional typicity, and constitute an attractive alternative for the consumer due to their sensory attributes. In this study, we have evaluated wines from 29 intraspecific Garnacha x Tempranillo hybrids in two different locations, with the aim to assess their oenological potential and sensory attributes. Thirteen of the selections were white and 16 were red. Microvinifications were conducted with two or three replications depending on grape availability. Conventional oenological parameters were determined for all wines. The sensory evaluation and hedonic scores were given by five experts. Red selections obtained higher quality scores than white ones. Among the white selections with higher quality scores, GT-41 Varea and GT-159 Varea outstand, due to their high total acidity and high malic acid content. Regarding red selections, GT-57 Varea and GT-57 UR were perceived as higher in quality, highlighted for their moderate alcoholic and high anthocyanin content. Our results indicate that intraspecific hybridization may be a powerful tool for adapting traditional cultivars to climate change in Rioja.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].