OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Abstract

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions. However, most of it is based on anecdotal knowledge and scientific studies relating berry and wine properties are rather limited [1]. 

Ten grapes of each variety (Sauvignon Blanc, Riesling, Pinot Noir) were picked weekly. Berries were dissected manually to obtain berries with intact peduncles. Using sucrose solutions of different densities, berries were separated into three density fractions of 1.070, 1.080, and 1.090. Three individual berries were assessed of each density group on each picking date. White and red wines were made from grapes picked concurrently with berry samples and were fermented in duplicates [2]. 

For Sauvignon Blanc 13 out of 21 visual, haptic, odor and taste attributes varied significantly among the three picking dates. Firmness and yellow color of the berries and brown color of the seeds and bitter berry skins yielded the largest F-ratios. Green notes in pulp and skin decreased during ripening. Variation of grape berry density yielded 14 significant attributes, including sweet and sour taste as well as fruity perception [2]. 

In a PCA the first PC was governed by ripe versus unripe attributes, while PC2 was dominated by presence versus absence of green odors in pulp and skin. Sensory evaluation revealed better grouping by density than grouping by picking date. 

Correlating berry and wine sensory brown seeds and sweet pulp correlated with increased peach and passionfruit notes in the wines. However, no correlation was found for green notes depicted in berries and green bell pepper nuances in the wines or fruity aspects in the berry and passion fruit / peach intensities in the wine. 

In conclusion, berry sensory yields a good characterization of the ripening process as well as technological grape properties, but is rather limited in the prediction of wine sensory properties. 

[1] Winter, E, Whiting, J., Rousseau, J. Berry Sensory Assessment, 2004, Winetitles, Adelaide, Australia 
[2] Nopora, J., Klink, S., Fischer, U. Reifeprüfung – Aussagekraft der Beerensensorik bei der Reifemessung, 2018, Der Deutsche Weinbau 17/18, pg. 26-30

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ulrich Fischer, Julia Nopora

Rebschule Freytag, 67435 Lachen-Speyerdorf, Germany
Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

Sensory evaluation, grape berry, grape maturity, wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Quantification of quercetin and quercetin-3-glucoside in Nebbiolo red wines

Quercetin-3-glucoside, a grape flavonol defence metabolite, is extracted during winemaking and may undergo subsequent degradation in wines. Hydrolysation reactions lead to the formation of the aglycone quercetin, which presents limited solubility in the wine matrix and can induce visible precipitations.

Producer organisations at the service of the favourable chain of values to winegrowers and winemakers: the example of France

French law and European Union law recognise the existence of interprofessional organisations that bring together all the links in the wine industry.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

The impact of differences in soil texture within a vineyard on vine development and wine quality

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances.