OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Abstract

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions. However, most of it is based on anecdotal knowledge and scientific studies relating berry and wine properties are rather limited [1]. 

Ten grapes of each variety (Sauvignon Blanc, Riesling, Pinot Noir) were picked weekly. Berries were dissected manually to obtain berries with intact peduncles. Using sucrose solutions of different densities, berries were separated into three density fractions of 1.070, 1.080, and 1.090. Three individual berries were assessed of each density group on each picking date. White and red wines were made from grapes picked concurrently with berry samples and were fermented in duplicates [2]. 

For Sauvignon Blanc 13 out of 21 visual, haptic, odor and taste attributes varied significantly among the three picking dates. Firmness and yellow color of the berries and brown color of the seeds and bitter berry skins yielded the largest F-ratios. Green notes in pulp and skin decreased during ripening. Variation of grape berry density yielded 14 significant attributes, including sweet and sour taste as well as fruity perception [2]. 

In a PCA the first PC was governed by ripe versus unripe attributes, while PC2 was dominated by presence versus absence of green odors in pulp and skin. Sensory evaluation revealed better grouping by density than grouping by picking date. 

Correlating berry and wine sensory brown seeds and sweet pulp correlated with increased peach and passionfruit notes in the wines. However, no correlation was found for green notes depicted in berries and green bell pepper nuances in the wines or fruity aspects in the berry and passion fruit / peach intensities in the wine. 

In conclusion, berry sensory yields a good characterization of the ripening process as well as technological grape properties, but is rather limited in the prediction of wine sensory properties. 

[1] Winter, E, Whiting, J., Rousseau, J. Berry Sensory Assessment, 2004, Winetitles, Adelaide, Australia 
[2] Nopora, J., Klink, S., Fischer, U. Reifeprüfung – Aussagekraft der Beerensensorik bei der Reifemessung, 2018, Der Deutsche Weinbau 17/18, pg. 26-30

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ulrich Fischer, Julia Nopora

Rebschule Freytag, 67435 Lachen-Speyerdorf, Germany
Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

Sensory evaluation, grape berry, grape maturity, wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.