OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Abstract

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions. However, most of it is based on anecdotal knowledge and scientific studies relating berry and wine properties are rather limited [1]. 

Ten grapes of each variety (Sauvignon Blanc, Riesling, Pinot Noir) were picked weekly. Berries were dissected manually to obtain berries with intact peduncles. Using sucrose solutions of different densities, berries were separated into three density fractions of 1.070, 1.080, and 1.090. Three individual berries were assessed of each density group on each picking date. White and red wines were made from grapes picked concurrently with berry samples and were fermented in duplicates [2]. 

For Sauvignon Blanc 13 out of 21 visual, haptic, odor and taste attributes varied significantly among the three picking dates. Firmness and yellow color of the berries and brown color of the seeds and bitter berry skins yielded the largest F-ratios. Green notes in pulp and skin decreased during ripening. Variation of grape berry density yielded 14 significant attributes, including sweet and sour taste as well as fruity perception [2]. 

In a PCA the first PC was governed by ripe versus unripe attributes, while PC2 was dominated by presence versus absence of green odors in pulp and skin. Sensory evaluation revealed better grouping by density than grouping by picking date. 

Correlating berry and wine sensory brown seeds and sweet pulp correlated with increased peach and passionfruit notes in the wines. However, no correlation was found for green notes depicted in berries and green bell pepper nuances in the wines or fruity aspects in the berry and passion fruit / peach intensities in the wine. 

In conclusion, berry sensory yields a good characterization of the ripening process as well as technological grape properties, but is rather limited in the prediction of wine sensory properties. 

[1] Winter, E, Whiting, J., Rousseau, J. Berry Sensory Assessment, 2004, Winetitles, Adelaide, Australia 
[2] Nopora, J., Klink, S., Fischer, U. Reifeprüfung – Aussagekraft der Beerensensorik bei der Reifemessung, 2018, Der Deutsche Weinbau 17/18, pg. 26-30

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ulrich Fischer, Julia Nopora

Rebschule Freytag, 67435 Lachen-Speyerdorf, Germany
Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

Sensory evaluation, grape berry, grape maturity, wine 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Évaluation environnementale de pratiques vitivinicoles innovantes

The Institut Français De La Vigne Et Du Vin (IFV) is conducting many experiments on innovative winegrowing practices, which are emerging in companies in the sector, or which are still at the R&D stage for agricultural suppliers. The purpose of these practices may be to reduce environmental impact, to adapt vineyards to climate change, or to achieve other technical, economic or social aims. Whatever the objective, it is necessary to verify the relevance of these new practices, and in particular their environmental relevance, i.e. That at the very least, the changes in practices do not increase the environmental impact of the technical itineraries.

Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

The spatial distribution of powdery mildew is often heterogeneous between neighboring plots, with higher disease pressure in certain places

Satellite imagery : a tool for large scale vineyard management

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.

Study of the interactions between wine anthocyanins and proline rich proteins

The interaction between tannins and salivary proteins is considered to be the basis of the phenomenon of wine astringency. Recently, some authors have revealed that some anthocyanins can also contribute to this mouthfeel sensation by interacting with proline rich proteins (PRPs). However, more studies are needed in order to elucidate the affinity of anthocyanins with these proteins.